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Abstract. Hydrodynamical phenomena can be simulated by discrete
lattice gas models obeying cellular automata rules [1,2]. It is here
shown for a class of D-dimensional lattice gas models how the macro-
dynamical (large-scale) equations for the densities of microscopically
conserved quantities can be systematically derived from the under-
lying exact “microdynamical” Boolean equations. With suitable re-
strictions on the crystallographic symmetries of the lattice and after
proper limits are taken, various standard fluid dynamical equations
are obtained, including the incompressible Navier-Stokes equations
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in two and three dimensions. The transport coefficients appearing
in the macrodynamical equations are obtained using variants of the
fluctuation-dissipation theorem and Boltzmann formalisms adapted
to fully discrete situations.

1. Introduction

It is known that wind or water tunnels can be indifferently used for test-
ing low Mach number flows, provided the Reynolds numbers are identical.
Indeed, two fluids with quite different microscopic structures can have the
same macroscopic behavior because the form of the macroscopic equations
is entirely governed by the microscopic conservation laws and symmetries.
Although the values of the transport coefficients such as the viscosity may
depend on the details of the microphysics, still, two flows with similar
geometries and identical values for the relevant dimensionless transport
coefficients are related by similarity.

Recently, such observations have led to a new simulation strategy for
fluid dynamics: fictitious microworld models obeying discrete cellular au-
tomata rules have been found, such that two- and three-dimensional fluid
dynamics are recovered in the macroscopic limit [1,2]. Cellular automata,
introduced by von Neumann and Ulam [3], consist of a lattice, each site
of which can have a finite number of states (usually coded by Boolean
variables); the automaton evolves in discrete steps, the sites being simul-
taneously updated by a deterministic or nondeterministic rule. Typically,
only a finite number of neighbors are involved in the updating of any site.
A very popular example is Conway’s Game of Life [4]. In recent years,
there has been a renewal of interest in this subject (see, e.g., [5-7]), espe-
cially because cellular automata can be implemented in massively parallel
hardware [8-10].

The class of cellular automata used for the simulation of fluid dynam-
ics are here called “lattice gas models”. Historically, they emerged from
attempts to construct discrete models of fluids with varying motivations.
The aim of molecular dynamics is to simulate the real microworld in or-
der, for example, to calculate transport coefficients; one concentrates mass
and momentum in discrete particles with continuous time, positions, and
velocities and arbitrary interactions [11-14]. Discrete velocity models, in-
troduced by Broadwell [15] (see also [16-20]), have been used mostly to
understand rarefied gas dynamics. The velocity set is now finite, space
and time are still continuous, and the evolution is probabilistic, being gov-
erned by Boltzmann scattering rules. To our knowledge, the first lattice
gas model with fluid dynamical features (sound waves) was introduced by
Kadanoff and Swift [21]. It uses a master-equation model with continuous
time. The first fully deterministic lattice gas model (now known as HPP)
with discrete time, positions, and velocities was introduced by Hardy, de
Pazzis, and Pomeau [22,23] (see also related work in reference 24). The
HPP model, a presentation of which will be postponed to section 2, was
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introduced to analyze, in as simple a framework as possible, fundamen-
tal questions in statistical mechanics such as ergodicity and the divergence
of transport coefficients in two dimensions [23]. The HPP model leads to
sound waves, which have been observed in simulations on the MIT cellular
automaton machine [8]. The difficulties of the HPP model in coping with
full fluid dynamics were overcome by Frisch, Hasslacher, and Pomeau [1] for
the two-dimensional Navier-Stokes equations; models adapted to the three-
dimensional case were introduced by d’Humiéres, Lallemand, and Frisch
[2]. This has led to rapid development of the subject [25-47]. These papers
are mostly concerned with lattice gas models leading to the Navier-Stokes
equations. A number of other problems are known to be amenable to
lattice gas models: buoyancy effects [48], seismic P-waves [49], magneto-
hydrodynamics [50-52], reaction-diffusion models [53-55], interfaces and
combustion phenomena [56,57}, Burgers’ model [58].

The aim of this paper is to present in detail and without unnecessary
restrictions the theory leading from a simple class of D-dimensional “one-
speed” lattice gas models to the continuum macroscopic equations of fluid
dynamics in two and three dimensions. The extension of our approach to
multi-speed models, including, for example, zero-velocity “rest particles”,
is quite straightforward; there will be occasional brief comments on such
models. We now outline the paper in some detail while emphasizing some
of the key steps. Some knowledge of nonequilibrium statistical mechanics
is helpful for reading this paper, but we have tried to make the paper
self-contained. :

Section 2 is devoted to various lattice gas models and their symmetries.
We begin with the simple fully deterministic HPP model {square lattice).
We then go to the FHP model (triangular lattice) which may be formulated
with deterministic or nondeterministic collision rules. Finally, we consider a
general class of (usually) nondeterministic, one-speed models containing the
pseudo-four-dimensional, face-centered-hypercubic (FCHC) model for use
in three dimensions [2|. In this section, we also introduce various abstract
symmetry assumptions, which hold for all three models (HPP, FHP, and
FCHC) and which will be very useful in reducing the complexity of the
subsequent algebra.

In section 3, we introduce the “microdynamical equations”, the Boolean
equivalent of Hamilton’s equations in ordinary statistical mechanics. We
then proceed with the probabilistic description of an ensemble of realiza-
tions of the lattice gas. At this level, the evolution is governed by a (dis-
crete) Liouville equation for the probability distribution function.

In section 4, we show that there are equilibrium statistical solutions with
no equal-time correlations between sites. Under some mildly restrictive as-
sumptions, a Fermi-Dirac distribution is obtained for the mean populations
which is universal, i.e., independent of collision rules. This distribution is
parametrized by the mean values of the collision invariants (usually, mass
and momentum).

Locally, mass and momentum are discrete, but the mean values of the
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density and mass current can be tuned continuously, just as in the “real
world”. Furthermore, space and time can be regarded as continuous by con-
sidering local equilibria, slowly varying in space and time (section 5). The
matching of these equilibria leads to macroscopic PDEs for the conserved
quantities.

The resulting “macrodynamical equations”, for the density and mass
current, are not invariant under arbitrary rotations. However, in section
6, we show that the essential terms in the macroscopic equations become
isotropic as soon as the lattice gas has a sufficiently large crystallographic
symmetry group (as is the case for the FHP and pseudo-four-dimensional
models, but not for the HPP model).

When the necessary symmetries hold, fluid dynamical equations are
derived in section 7. We consider various limits involving large scales and
times and small velocities (compared to particle speed). In one limit, we
obtain the equations of scalar sound waves; in another limit, we obtain the
incompressible Navier-Stokes equations in two and three dimensions. It is
noteworthy that Galilean invariance, which does not hold at the microscopic
level, is restored in these limits.

In section 8, we show how to determine the viscosities of lattice gases.
They can be expressed in terms of equilibrium space-time correlation func-
tions via an adaptation to lattice gases of fluctuation-dissipation relations.
This is done with a viewpoint of “noisy” hydrodynamics, which also brings
out the crossover peculiarities of two dimensions, namely a residual weak
scale-dependence of transport coefficients at large scales. Alternatively,
fluctuation-dissipation relations can be obtained from the Liouville equa-
tion with a Green-Kubo formalism [43]. Fully explicit expressions for the
viscosities can be derived via the “Lattice Boltzmann Approximation”,
not needed for any earlier steps. This is a finite-difference variant of the
discrete-velocity Boltzmann approximation. The latter, which assumes con-
tinuous space and time variables, is valid only at low densities, while its
lattice variant seems to capture most of the finite-density effects (with the
exception of two-dimensional crossover effects). Further studies of the Lat-
tice Boltzmann Approximation may be found in reference 42. Implications
for the question of the Reynolds number are discussed at the end of the
section.

Section 9 is the conclusion. Various questions are left for the appendices:
detailed technical proofs, inclusion of body forces, catalog of results for
various FHP models, proof of an H-theorem for the Lattice Boltzmann
Approximation (due to M. Hénon).

2. Deterministic and nondeterministic lattice gas models
2.1 The HPP model

Let us begin with a heuristic construction of the HPP model [22-24]. Con-
sider a two-dimensional square lattice with unit lattice constant as shown
in figure 1. Particles of unit mass and unit speed are moving along the
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Figure 1: The HPP model. The black arrows are for cell-occupation.
In (a) and (b) the lattice is shown at two successive times.

lattice links and are located at the nodes at integer times. Not more than
one particle is to be found at a given time and node, moving in a given
direction (exclusion principle). When two and exactly two particles arrive
at a node from opposite directions {head-on collisions), they immediately
leave the node in the two other, previously unoccupied, directions (see fig-
ure 2). These deterministic collision laws obviously conserve mass (particle
number) and momentum and are the only nontrivial ones with these prop-
erties. Furthermore, they have the same discrete invariance group as the
lattice.

The above definition can be formalized as follows. We take an L by
L square lattice, periodically wrapped around (a nonessential assumption,
made for convenience). Eventually, we will let L — oco. At each node,
labeled by the discrete vector r,, there are four cells labeled by an in-
dex t, defined modulo four. The cells are associated to the unit vectors
¢; connecting the node to its four nearest neighbors (i increases counter-
clockwise). Each cell (r,, 1) has two states coded with a Boolean variable:
ni(r,) = 1for “occupied” and n;(r.) = Ofor “unoccupied”. A cellular au-
tomaton updating rule is defined on the Boolean field n. = {n(r.),{ =
1,...,4, r, € Lattice}. It has two steps. Step one is collision: at each
node, the four-bit states (1, 0, 1, 0) and (0, 1, 0, 1) are exchanged; all other
states are left unchanged. Step two is propagation: n;(r.) — ni(r. — c;).
This two-step rule is applied at each integer time, t,. An example of imple-
mentation of the rule, in which arrows stand for cell-occupation, is shown
in figures 1a and b.

Collisions in the HPP model conserve mass and momentum locally,
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Figure 2: Collision rules for the HPP model.

whereas propagation conserves them globally. (Actually, momentum is
conserved along each horizontal and vertical line, resulting in far too many
conserved quantities for physical modeling.) If we attribute to each parti-
cle a kinetic energy -;*, the total kinetic energy is also conserved. Energy
conservation is, however, indistinguishable from mass conservation and will
not play any dynamical role. Models having an energy conservation law in-
dependent of mass conservation will not be considered in this paper (see
[2:29])‘

The dynamics of the HPP model is invariant under all discrete transfor-
mations that conserve the square lattice: discrete translations, rotations by
%» and mirror symmetries. Furthermore, the dynamics is invariant under
duality, that is exchange of 1’s and 0’s (particles and holes).

2.2 The FHP models

The FHP models I, II, and III (see below), introduced by Frisch, Hasslacher,
and Pomeau {1] (see also [25-31,35,38—44,46]) are variants of the HPP model
with a larger invariance group. The residing lattice is triangular with unit
lattice constant (figure 3). Each node is now connected to its six neighbors
by unit vectors c; (with ¢ defined modulo six) and is thus endowed with
a six-bit state (or seven, see below). Updating involves again propagation
(defined as for HPP) and collisions.

In constructing collision rules on the triangular lattice, we must consider
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Figure 3: The FHP model with binary head-on and triple collisions
at two successive times.

both deterministic and nondeterministic rules. For a head-on collision with
occupied “input channels” (¢, 1 + 3), there are two possible pairs of oc-
cupied “output channels” such that mass and momentum are conserved,
namely (f + 1,1+ 4) and (¢ — 1,  — 4) (see figure 4a). We can decide al-
ways to choose one of these channels; we then have a deterministic model,
which is chiral, i.e., not invariant under mirror-symmetry. Alternatively,
we can make a nondeterministic (random) choice, with equal probabilities
to restore mirror-symmetry. Finally, we can make a pseudo-random choice,
dependent, for example, on the parity of a time or space index.

We must also consider spurious conservation laws. Head-on collisions
conserve, in addition to total particle number, the difference of particle
numbers in any pair of opposite directions (¢, ++3). Thus, head-on collisions
on a triangular lattice conserve a total of four scalar quantities. This means
that in addition to mass and momentum conservation, there is a spurious
conservation law. The large-scale dynamics of such a model will differ
drastically from ordinary hydrodynamics, unless the spurious conservation
law is removed. One way to achieve this is to introduce triple collisions
(f,i+2,¢+4) — (1+1,{+3,i+5) (see figure 4b).

Several models can be constructed on the triangular lattice. The sim-
plest set of collision rules with no spurious conservation law, which will
be called FHP-I, involves only (pseudo-random) binary head-on collisions
and triple collisions. FHP-I is not invariant under duality (particle-hole
exchange), but can be made so by inclusion of the duals of the head-on
collisions (see figure 4c). Finally, the set of collision rules can be saturated
(exhausted) by inclusion of head-on collisions with a “spectator” [59], that
is, a particle which remains unaffected in a collision; figure 4d is an example
of a head-on collision with a spectator present.
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Figure 4: Collision rules for the FHP models: (a) head-on collision
with two output channels given equal weights; (b) triple collision;
(c) dual of head-on collision under particle-hole exchange; (d) head-
on collision with spectator; (e) binary collisions involving one rest
particle (represented by a circle).

The model, FHP-II, is a seven-bit variant of FHP-I including a zero-
velocity “rest particle”, the additional collision rules of figure 4e, and vari-
ants of the head-on and triple collisions of figures 4a and 4b with a spectator
rest particle. Binary collisions involving rest particles remove spurious con-
servations, and do so more efficiently at low densities than triple collisions.
Finally, model FHP-III is a collision-saturated version of FHP-II [31]. For
simplicity, we have chosen not to cover the theory of models with rest par-
ticles in detail.

The dynamics of the FHP models are invariant under all discrete trans-
formations that conserve the triangular lattice: discrete translations, ro-
tations by 7/3, and mirror symmetries with respect to a lattice line (we
exclude here the chiral variants of the models).

2.3 The FCHC four-dimensional and the pseudo-four-dimensional
models

Three dimensional regular lattices do not have enough symmetry to ensure
macroscopic isotropy {1,2,39]. A suitable four-dimensional model has been
introduced by d’Humiéres, Lallemand, and Frisch {2]. The residing lattice
is face-centered-hypercubic (FCHC), defined as the set of signed integers
(z1, %2, Ts, T4) such that z, + 22 + 25 + 24 is even. Each node is connected
via links of length ¢ = v/2 to 24 nearest neighbors, having two coordinates
differing by +1. Thus, the FCHC model has 24-bit states. The 24 possible
velocity vectors are again denoted c;; for the index ¢, there is no preferred
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ordering and we will leave the ordering unspecified. Propagation for the
FCHC lattice gas is as usual. Collision rules should conserve mass and four-
momentum while avoiding spurious conservations. This can be achieved
with just binary collisions, but better strategies are known [32,33]. Non-
deterministic rules involving transition probabilities are needed to ensure
that the collisions and the lattice have the same invariance group (precise
definitions are postponed to section 2.4}.

The allowed transformations of the FCHC model are discrete transla-
tions and those isometries generated by permutations of coordinates, rever-
sal of one or several coordinates and symmetry with respect to the hyper-
plane z; + z2 + z3 + =, = 0.

To model three-dimensional fluids and maintain the required isotropies,
we define the pseudo-four-dimensional model [2] as the three-dimensional
projection of an FCHC model with unit periodicity in the z,-direction (see
figure 5). It resides on an ordinary cubic lattice with unit lattice constant.
The full four-dimensional discrete velocity structure is preserved as follows.
There is one communication channel to the twelve next-nearest neighbors
(corresponding to the twelve velocity vectors such that vy, the fourth com-
ponent of the velocity, vanishes) and there are two communication channels
to the six nearest neighbors (corresponding respectively to velocities with
vy = *1). During the propagation phase, particles with v4 = +1 move to
nearest neighbor nodes, while particles with vy, = 0 move to next-nearest
neighbors. The collision strategy is the same as for the FCHC model, so
that four-momentum is conserved. The fourth component is not a spuri-
ously conserved quantity because, in the incompressible limit, it does not
effectively couple back to the other conserved quantities [2].

2.4 A general class of nondeterministic models

In most of this paper, we will work with a class of models (generally non-
deterministic) encompassing all the above one-speed models. The relevant
common aspects of all those models are now listed: there is a regular lat-
tice, the nodes of which are connected to nearest neighbors through links
of equal length; all velocity directions are in some sense equivalent and the
velocity set is invariant under reversal; at each node there is a cell associ-
ated with each possible velocity. This cell can be occupied by one particle
at most; particles are indistinguishable; particles are marched forward in
time by successively applying collision and propagation rules; collisions are
purely local, having the same invariances as the velocity set; and collisions
conserve only mass and momentum.

We now give a more formal definition of these one-speed models as
cellular automata. Let us begin with the geometrical aspects. We take
a D-dimensional Bravais lattice £ in RP of finite extension O(L) in all
directions (eventually, L — oo); the position vector r, of any node of such
a lattice is a linear combination with integer coefficients of D independent
generating vectors [60]. We furthermore assume that there exists a set of
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Figure 5: The pseudo-four-dimensional FCHC model. Only the neigh-
borhood of one node is shown. Along the dotted links, connecting
to next-nearest neighbors, at most one particle can propagate, with
component vy = 0; along the thick black links, connecting to near-
est neighbors, up to two particles can propagate, with components
vy = +1.
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b “velocity vectors” ¢; having equal modulus ¢, the particle speed. c; has
spatial components ¢;, (a =1,..., D).! We require the following for c;:

1. For any r, € L, the set of the r, + ¢;’s is the set of nearest neighbors
of r,.

2. Any two nodes can be connected via a finite chain of nearest neigh-
bors.

3. For any pair {c;, c;) there exists an element in the “crystallographic”
group § of isometries globally preserving the set of velocity vectors,
which maps c; into c;.

4. For any velocity vector c;, we denote by §; the subgroup of G which
leaves ¢; invariant and thus leaves its orthogonal hyperplane, I1;, glob-
ally invariant; we assume that (a) there is no non-vanishing vector in
I1; invariant under all the elements of §; and (b) the only linear trans-
formations within the space II; commuting with all the elements of
G are proportional to the identity.

Now, we construct the automaton. To each node r, we attach a b-
bit state n(r,) = {ni(r,), ¢ = 1,...,b}, where the n;’s are Boolean vari-
ables. The updating of the “Boolean field”, n(.), involves two successive
steps: collision followed by propagation. We choose this particular order
for technical convenience; after a large number of iterations, it will become
irrelevant which step was first.? Propagation is defined as

n(r,) — ni{r. —ci). (2.1)

The spatial shifting by c; is performed on a periodically® wrapped around
lattice with O(L) sites in any direction; eventually, L — oo. Collision is the
simultaneous application at each node of nondeterministic transition rules
from an in-state s = {s;, i = 1,...,b} to an out-state s’ = {s}, + = 1,...,b}.
Each transition is assigned a probability A(s — s') > 0, normalized to one
(X, A(s — s} = 1Vs), and depending only on s and s’ and not on the
node. The following additional assumptions are made.

5. Conservation laws: the only collections of b real numbers a; such that

Z(S: —8)A(s — s')a; =0, Vs, s, (2.2)

*In this paper, Greek and Roman indices refer respectively to components and velocity
labels. Summation over repeated Greek indices, but not Roman ones, is implicit.

2For deterministic lattice gases, such as HPP, it is possible to bring out the reversibility
of the updating rule by defining the state of the automaton at half-integer times, with
particles located at the middle of links connecting nearest-neighbor nodes; updating then
comprises half a propagation, followed by collision, followed by another half propagation
[22].

30ther boundary conditions at the lattice edge can also be used—for example, “wind-
tunnel” conditions [25,26,28].
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are linear combinations of 1 (for all ¢) and of Ci1y---, D, 1.€. @y is
related to mass and momentum conservation.

6. Invariance under all isometries preserving the velocity set:
Alg(s) > 8(s)) = A(s — &), VgEG, Vs, s (2.3)
7. Semi-detailed balance;

Y A(s— ') =1, Vs (2.4)

Various comments are now in order. Semi-detailed balance, also used
in discrete velocity Boltzmann models [17], means that if before collision
all states have equal probabilities, they stay so after collision. It is trivially
satisfied when the collision rule is deterministic and one-to-one. There
exists also a stronger assumption, detailed balance (that is A(s — §') =
A(s" — s)), which will not be needed here. The HPP, FHP, and FCHP
lattice gases satisfy the above assumptions (1) through (4). The proofs
are given in Appendix A. The other assumptions (5) through (7) hold by
construction with the exception of the chiral versions of FHP. The latter do
not satisfy (6) because the collision rules are not invariant under the mirror-
symmetries with respect to velocity vectors. Full G-invariance holds for the
velocity set of the pseudo-four-dimensional model, which is the same as for
the FCHC model; however, the spatial structure is only invariant under the
smaller group of the three-dimensional cubic lattice.

The invariance assumptions introduced above have important conse-
quences for the transformation properties of vectors and tensors. The fol-
lowing definitions will be used. A tensor is said to be G-invariant if it is
invariant under any isometry in G. A set of i-dependent tensors of order
p {T; = tiaraz..apy # = 1,...,b} is said to be G-invariant if any isometry in
G changing ¢; into ¢;, changes T; into T;. Note that this is stronger than
global invariance under the group G. The velocity moment of order p is
defined as 3, ¢ja, Cia, - - - Cia,-

We now list the transformation properties following from G-invariance.
The proofs are given in Appendix B.

P1 Parity-invariance. The set of velocity vectors is invariant under space-
reversal.

P2 Any set of i-dependent vectors Via, Which is G-invariant, is of the form
/\C.‘a.

P3 Any set of i-dependent tensors Liag, Which is G-invariant, is of the
form AcinCig + pb,p-

P4 Isotropy of second-order tensors. Any G-invariant tensor t,4 is of the
form pé,g.

P5 Any G-invariant third-order tensor vanishes.
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P6 Velocity moments. Odd-order velocity moments vanish. The second-
order velocity moment is given by

bc?
ZC"QC{p = 360,5. (2.5)

There is, in general, no closed form expression for even-order velocity
moments beyond second order, with the assumptions made up to this point
(see section 6).

3. Microdynamics and probabilistic description
3.1 Microdynamical equations

It is possible to give a compact representation of the “microdynamics”,
describing the application of the updating rules to the Boolean field. This is
the cellular automaton analog of Hamilton’s equations of motion in classical
statististical mechanics. We begin with the HPP lattice gas (section 2.1).
Let n;(t,,r.), as defined in section 2.1, denote the HPP Boolean field at the
discrete time t,. With ¢ labeling the four cells of an HPP node, the collision
rule can be formulated as follows: If the in-state has ¢+ and ¢ + 2 empty and
1+ 1 and t + 3 occupied, then the opposite holds in the out-state; similarly,
if the in-state has 1+ 1 and 1 + 3 empty and 7 and + 4+ 2 occupied; otherwise,
the content of cell 1 is left unchanged. Thus, the upda.tmg of the Boolean
field may be written

ni(t* +1,r,+ Cl’) =
(ri A~ (n; A Rjpa A —nipr A ngga) )V (Ripr A rigs A ng A Dngygq) (3.1)

where the whole r.h.s. is evaluated at ¢, and r,. The symbols A, V, and —
stand for AND, OR, and NOT respectively. It is known that any Boolean
relation can be recoded in arithmetic form {A becomes multiplication, —
becomes one minus the variable, etc.). In this way, we obtain

ni(t. + 1,r. +ci) = ni(t,, 1.} + Ai(n). (3.2)

The “collision function” A;(n), which can take the values £1 and 0, de-
scribes the change in n;(t,,r,) due to collisions. For the HPP model, it

depends only on ¢ and on the set of n,’s at t, and r., denoted n; it is given
by

A.-(n) =
nisnips(l — 1) (1 — niga) — ningp2(1 — nig 1) (1 — nigs). (3.3)

Equation (3.2) (with A;(n) given by equation (3.3)) will be called the mi-
crodynamical HPP equation. It holds for arbitrary ¢ (modulo four), for
arbitrary integer t,., and for arbitrary r, € £ (L designates the lattice).

It is easy to extend the microdynamical formalism to other models. For
FHP-I (section 2.2), we find that the collision function may be written (¢
is now defined modulo six)
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Ai(n) = .r. Nip1Ripa(1 — ) (1 — niga) (1 — niys) (1~ niys)
F(1—¢&,.p.)  nisanigs(1 — ) (1 — nipr) (1 — nigs) (1 — niga)

- ninies(l — nie1) (1 — nip2) (1 = rird (1 — nigs)  (3.4)
+ nip1ftipattips(1 — m) (1 — nip2)(1 — nipy)

— intiparipa(1 — nipr) (1 — nigps)(1 — niys)

Here, £, .. denotes a time- and site-dependent Boolean variable which takes
the value one when head-on colliding particles are to be rotated counter-
clockwise and zero otherwise (remember, that there are two possible out-
comes of such collisions). For the theory, the simplest choice is to assign
equal probabilities to the two possibilities and to assume independence of
all the £’s. In practical implementations, other choices are often more con-
venient.

We now give the microdynamical equation for the general class of nonde-
terministic models defined in section 2.4. Propagation is as before. For the
collision phase at a given node; it is convenient to sum over all 2* in-states
s = {s; = Oorl, ¢ = 1,...,b} and 2 out-states s'. The nondeterministic
transitions are taken care of by the introduction at each time and node
and for any pair of states (s, s') of a Boolean variable £,, (time and space
labels omitted for conciseness). We assume that

(Esa') = A(S - S’), VS, S‘, . (35)

where A(s — 3'} is the transition probability introduced in section 2.4; the
angular brackets denote averaging. We also assume that

Z eu’ = 1, Vs. (3.6)

Since the £’s are Boolean, equation (3.6) means that, for a given in-state s
and a given realization of £,,:, one and only one out-state s' is obtained. It
is now clear that the microdynamical equation can be written as

ni(te + 1,rw + ;) = 3 sl [[ n (1 — nj) ). (3.7)

8,8’ i

The factor s! ensures the presence of a particle in the cell  after the collision;
the various factors in the product over the index j ensure that before the
collision the pattern of n;’s matches that of s;’s. Using equation (3.7) and
the identity

2 silIni (1 —ny)07) =, (3.8)
s J
we can rewrite the microdynamical equation in a form that brings out the
collision function

ni(t. + 1,1, + ¢;) = ni + Ai(n)

Ai(n) = Z(s: — 8;) E,at Hn;"(l - nj)(l—'j). (3.9)

z,8!
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In the sequel, it will often be useful to have a compact notation. We
define the collision operator,

C: n;(r*) — n(r.) + Ai(n(rs)), (3.10)
the streaming operator,

S & ni(ry) = ni(re —c), (3.11)
and the evolution operator, the composition of the latter,

E=S8oC. (3.12)
The entire updating can now be written as

n(t. +1,.) = En(t.,.), (3.13)
where the point in the second argument of the n’s stands for all the space

variables.

An interesting property of the microdynamical equation, not shared by
the Hamilton equations of ordinary statistical mechanics, is that it remains
meaningful for an infinite lattice, since the updating of any given node
involves only a finite number of neighbors.

3.2 Conservation relations

Conservation of mass and momentum at each node in the collision process
can be expressed by the following relations for the collision function:

Y Ai(r) =0, Vre{0,1}, (3.14)

> ciAi(n) =0, Vne {0, 1}, (3.15)
where {0, 1} denotes the set of all possible b-bit words. This implies im-
portant conservation relations for the Boolean field:

Z ni(t, + 1,r.+¢;) = Z ni(te, Tu), (3.16)

ZC,‘R,‘ (t* +1,r, + C") = Zc,-n,-(t*, 1'*). (317)
1 s
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3.3 The Liouville equation

We now make the transition, traditional in statistical mechanics, from a
deterministic to a probabilistic point of view. This can be obscured by the
fact that some of our models are already probabilistic. So, let us assume
for a while that the evolution operator is deterministic and invertible (as is
the case for HPP).

Assuming that we have a finite lattice, we define the phase space, T,
as the set of all possible assignments s(.) = {si(r.),+ = 1,...,b, 1, € L}
of the Boolean field n;(r,). A particular assignment of the Boolean field
will be called a configuration. We now consider at time ¢, = 0 an ensemble
of initial conditions, each endowed with a probability P(0,s(.)) > 0, such
that

> P(0,s()) =1. (3.18)

s{)er

We let each configuration in the ensemble evolve according to the automa-
ton updating rule, i.e., with the evolution operator £ of equation (3.13).
The latter being, here, invertible, conservation of probability is expressed
as

P(t.+1,5()) = P(t, E7%s()). (3.19)

This equation is clearly the analog of the Liouville equation of statistical
mechanics, and will be given the same name. Alternatively, the Liouville
equation can be written

P(t.+1,85()) = P(t..C's()). (3.20)

To derive this, we have used equation (3.12) and put the streaming operator
in the Lh.s., a form which will be more convenient subsequently.

In the nondeterministic case, we must enlarge the probability space to
include not only the phase space of initial conditions, but the space of all
possible choices of the Boolean variables £(ss"), which at each time and each
node select the unique transition from a given in-state s (see section 3.1).
Since the &’s are independently chosen at each time, the entire Boolean
field n(t.,.) is a Markov process (with deterministic rules, this process is
degenerate). What we will continue to call the Liouville equation is actually
the Chapman-Kolmogorov equation for this Markov process, namely

P(t.+1,84()) = Y. I A(s(r.) — &'(z.)) P(t.,s()).  (3.21)

s(.)eT r.€Ll

This equation just expresses that the probability at ¢,+1 of a given (propa-
gated) configuration §'(.) is the sum of the probabilities at ¢, of all possible
original configurations s(.) times the transition probability. The latter is
a product, because we assumed that the £’s are chosen independently at
each node. In the deterministic case, A (s(r,) — s'(r,)) selects the unique
configuration C~1s'(.), so that equation (3.20) is recovered.
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3.4 Mean quantities

Having introduced a probablistic description, we now turn to mean quan-
tities. For an “observable” g(n(t,,.)), which depends on the Boolean field
at a single time, the mean is given by ensemble averaging over P (t.,s(.))

(a(a(t))) = X a(s))P(tns()- (3.22)

s(.)er

An important role will be played in the sequel by the following mean
quantities: the mean population

Ne' (t*a l'.,,) = (ni (t*a l'*)), (3.23)
the density, and the mass current (mean momentum)

p(t.,r.) = ZN.-(t*, r.), J{t..r.) = Zc;N,-(t*,r*). (3.24)

Note that these are mean quantities per node, not per unit area or volume.
The density per cell is defined as d = p/b. Finally, the mean velocity u is
defined by

i(t.,r) = p(te, v)ults, T (3.25)

Note that under duality {exchange of particles and holes), p changes
into b — p, d into 1 — d, , j into —j, and u into the “mean hole-velocity”
g = —ud/(l - d).

Averaging of the microdynamical conservation relations 3.16 and 3.17
leads to conservation relations for the mean populations

2 Niftu + Lt + ) = 3 Nifta ), (3.26)
Z C;N,-(t* +1,r, + C.‘) = Zc;N,-(t*,r*). (3.27)

4. Equilibrium solutions

It has been shown by Hardy, Pomeau, and de Pazzis {22] that the HPP
model has very simple statistical equilibrium solutions (which they call
invariant states) in which the Boolean variables at all the cells are indepen-
dent. Such equilibrium solutions are the lattice gas equivalent of Maxwell
states in classical statistical mechanics and are therefore crucial for deriving
hydrodynamics. There are similar results for the general class of nondeter-
ministic models introduced in section 2.4, which are now discussed.
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4.1 Steady solutions of the Liouville equation

We are interested in equilibrium solutions, that is, steady-state solutions
of the Liouville equation (3.21) for a finite, periodically wrapped around
lattice. Collisions on the lattice are purely local (their impact parameter is
zero). This suggests the existence of equilibrium solutions with no single-
time spatial correlations. The lattice properties being translation-invariant,
the distribution should be the same at each node. Thus, we are looking for
equilibrium solutions of the form

P(s()) = II »(s(r.)), (4.1)

where p(s), the probability of a given state, is node-independent. Max-
imization of the entropy (see Appendix F) suggests that ?(s) should be
completely factorized over all cells, that is, of the form

p(s) = [T Ny (1 — Ny U2, (4.2)

Note that N;*(1 — N;)('=*) is the probability of a Boolean variable with
mean N;.

Now, we must check that there are indeed solutions of the form that we
have been guessing. Substitution of P(s(.)) given by equation (4.1) with
p(s) given by equation (4.2) into the Liouville equation (3.21) leads to

TIN; (1 - Nj)0= = 3 (s — &) [TV (1 — Ny, ve!, (4.3)
) s j

where N; is the mean population of cell 1, independent of the node and of
the time. ‘

Equation (4.3) is a set 2* (the number of different states) equations
for b unknowns. The fact that it actually possesses solutions is nontrivial.
Furthermore, these solutions can be completely described. Indeed, we have
the following lemma.

Lemma 1. The following statements are equivalent:

1. The N;’s are a solution of equation (4.3).

2. The N;’s are a solution of the set of b equations
D (si—s)A(s = ] N/ (1— N;)t=%) =0, Wi (4.4)
sat 7

3. The N;’s are given by the Fermi-Dirac distribution

1
Nl': )
1+exp(h+q-c;)

(4.5)

where h is an arbitrary real number and q is an arbitrary D-dimensional
vector.
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The proof of the equivalence is given in Appendix C; it makes use of
semi-detailed balance and the absence of spurious invariants. The most
important consequence of the lemma is the Universality Theorem. Nonde-
terministic lattice gas models satisfying semi-detailed balance and having
no spurious invariants admit universal equilibrium solutions, completely
factorized over all nodes and all cells, with mean populations given by
the Fermi-Dirac distribution (4.5), dependent only on the density p and
the mass current j = pu, and independent of the transition probabilities
A(s — §').

The proof follows from the observation that the Lagrange multipliers
h and q of the Fermi-Dirac distribution can be calculated in terms of the
density and the mass current through the relations

P= TN = S e e (16)

1
= i = : . 7
pu ;Nc zi:c1+exp(h+q-c.-) (4.7)

For the HPP model, this set of equations is reducible to a cubic poly-
nomial equation, so that explicit solutions are known [22]. For the FHP
model, explicit solutions are known only for special cases [61].

It is not particularly surprising for models that have a built-in exclusion
principle (not more than one particle per cell) to obtain a Fermi-Dirac
distribution at equilibrium. Note that the factorized equilibrium solutions
remain meaningful on an infinite lattice. There is no proof at the moment
that the only equilibrium solutions which are relevant in the limit of infinite
lattices are of the above form, namely completely factorized (which then
implies the Fermi-Dirac distribution). There is strong numerical evidence,
for those models that have been simulated, that the Fermi-Dirac is the only
relevant one [8,25,27).

4.2 Low-speed equilibria

In the “real world”, equilibrium distributions with different mean velocities
are simply related by a Galilean transformation. Galilean invariance does
not hold at the microscopic level for a lattice gas; therefore, there is no sim-
ple relation between the equilibria with vanishing and nonvanishing mean
velocity. For subsequent derivations of fluid dynamical equations, we will
only need equilibria with low speeds, that is with v = |u] < ¢, the particle
speed. Such equilibria can be calculated perturbatively in powers of u.
We write the equilibrium distribution as

N: = frD(k(p,n) + a(p,u) - <), (4.8)
where we have used the Fermi-Dirac function
1
frD(z) = (4.9)

1+e’.
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We observe that

u=o=>N.-=§=d. (4.10)
Indeed, by assumption (3) of section 2.4, there exists an isometry of the
lattice exchanging any two velocity vectors c; and c;; the vector u = 0
being also trivially invariant, the mean population N; is independent of .
Thus, frp (h(p,0}) = d and q(p,0) = 0.

Furthermore, it follows from parity-invariance (u = —u, ¢; —» —c¢;)
that

h{p,—u) = h(p,u), q(p,—u) = —q(p,u). (4.11)
We now expand h and q in powers of u

h(p,u) = ho + hau® + O(u*)

ga(p,0) = qru, + O(), (4.12)

where ho, hy, and ¢; depend on p. The fact that h; and ¢, are scalars rather
than second-order tensors is a consequence of the isotropy of second-order
tensors (property P4 of section 2.4). We substitute equation (4.12) into
equation (4.8) and expand the mean populations in powers of u

' 1
N; = frD+ qifpDu-¢; + hyfp Du® + gqf rD(u-c;)? + O(x®).(4.13)

Here, f¢ D, fpD, and fgD are the values at ko of the Fermi-Dirac function
and its first and second derivatives. From equation (4.13), we calculate the
Jensﬂ‘.y p = 2; N; and the mass current pu = }; ¢;NV;, using the velocity
moment relations (P6 of section 2.4). Identification gives ho, h3, and ¢; in
terms of p. This is then used to calculate the equilibrium mean population
up to second order in u; we obtain

pD

.q p
Nitlow) =5+ 0

Ciata + PG(P) Qinptatis + O(u®) (4.14)

where

D* b—-2p c?
= and Qiup = CiaCig — D las

{4.15)

In equation (4.14), the superscript “eq” stresses that the mean population
are evaluated at equilibrium.

Note that the coefficient G(p) of the quadratic term vanishes for p = /2,
that is, when the density of particles and holes are the same. This result,
which holds more generally for the coefficients of any even power of u,
follows by duality: N;* goes into 1 — N;* and u into —u at p = 4/2. Tt
does not matter whether or not the collision rules are duality-invariant,
as long as they satisfy semi-detailed balance, since the equilibrium is then
universal.
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5. Macrodynamical equations

In the “real world”, fluid dynamics may be viewed as the gluing of local
thermodynamic equilibria with slowly varying parameters [62,63]. Lattice
gases also admit equilibrium solutions.* These have continuously adjustable
parameters, the mean values of the conserved quantities, namely mass and
momentum. On a very large lattice, we can set up local equilibria with
density and mass current slowly changing in space and time. From the
conservation relations, we will derive by a multi-scale technique macrody-
namical equations, that is, PDEs for the large scale and long-time behavior
of density and mass current.

We consider a lattice gas satisfying all the assumptions of section 2.4.
We denote by p(r.) and u(r,) the density and (mean) velocity® at lattice
node r,. We assume that these quantities are changing on a spatial scale
¢! (in units of lattice constant). This requires that the lattice size L be
itself at least O(¢™!). Eventually, we let ¢ — 0. The spatial change is
assumed to be sufficiently regular to allow interpolations for the purpose of
calculating derivatives.® When time and space are treated as continuous,
they are denoted ¢ and r. We further assume that the density is O(1) and
that the velocity is small compared to the particle speed ¢.” We expect the
following phenomena:

1. relaxation to local equilibrium on time scale €°,

2. density perturbations propagating as sound waves on time scale e,

3. diffusive {(and possibly advective) effects on time scale ¢7*.

We thus use a three-time formalism: t, (discrete), t; = et,, and t; = €’t,,
the latter two being treated as continuous variables. We use two space
variables: r, (discrete) and r; = er, (continuous}.

Let us denote by N{”(r,) the mean equilibrium populations based on
the local value of p and u. They are given by equation (4.14). The actual
mean populations N;(t,r) will be close to the equilibrium values and may
be expanded in powers of €:

N; = NO(t,r) + eNP(t,x) + O(€). (5.1)

The corrections should not contribute to the local values of density and
mean momentum,; thus,

z N‘-(l) (t, l‘) =0 and Z C,'N,-(l) (t, I') = 0. (5‘2)

4The qualification “thermodynamic” is not so appropriate since there is no relevant
energy variable.

5Henceforth, we will just write “velocity”, since this mean velocity changes in space.

$The interpolations can be done via the Fourier representation if the lattice is periodic.

TEventually, we will assume the velocity to be Of{e), but at this point it is more conve-
nient to keep ¢ and u as independent expansion parameters.
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We now start from the exact conservation relations (3.26) and (3.27)
and expand both the N;’s and the finite differences in powers of ¢. Note
that all finite differences must be expanded to second order; otherwise, the
viscous terms are not correctly captured. Time and space derivatives will
be denoted &, and 9, = {8,, @ = 1,..., D}. For the multi-scale formalism,
we make the substitutions

9y — €9y, + eza,, and O, — €0, (5.3)

The components of 3., will be denoted 9,,.
To leading order, O(¢), we obtain

36, 3N + 8y 2 cisN® =0, (5.4)

and

O, E C;QIV;-(O) + 31p ZC.'Q,C;gN‘-(O) =0. (5.5)

We now substitute the equilibrium values (4.14) for the N,-(o)’s and use the
velocity moment relations P8 of section 2.4. We obtain the “macrodynam-
ical Euler equations”

3¢, p + d15(pug) =0, (5.6)
and

81, (pta) + B15Pag = 0. (5.7)
P,p is the momentum-flux tensor,?

Py = Zc,-,,c;pN,-"‘

2

C
= pPlas+ PG(P) Taprs uqus + O(u?), (5.8)
with
Taﬂq& = ZciaciﬁQiqs’ (59)

and G(p) and Qiys given by equation (4.15) of section 4. Note that the
correction term in the r.h.s. of equation (5.8) is O(u*) rather than O{u?%);
indeed, it follows from the parity-invariance of the lattice gas that first-
order spatial derivative terms do not contain odd powers of u.

We now proceed to the next order, O(e?). We expand equations (3.26)
and (3.27) to second order; collecting all O(€?) terms, we obtain

t

1
O, Z M(O) + —2-6,16,1 Z N‘.(O) + 8y,015 EciﬂM(O)

8 Actually, this is only the Jeading order approximation to the momentum-flux.
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1
+ 501591 Y cipci N +8, NP + 0153 cisNP =0,  (5.10)

and

1
3, 3 ciaN® + 290 NP + 8,0 > ciacig N
i £ 1

1
+§alﬁal1 Z ciaciﬁcin.‘(O) + atx Z ciu:Ng‘(i)
+01p 3 ciacigN = 0. (5.11)

By equation (5.2), ¥ N,-(l) = 0 and }; c.-aN,-(l) = 0. For the N'.(o)’s, we
substitute their low-speed equilibrium form (4.14), leaving out O(u?) terms.
Re-expressing derivatives of p and pu with respect to £; in terms of space
derivatives, using equations (5.6) and (5.7), we obtain

atzp =0 (5.12)

and

D
3¢, (pua) + 018 (Z ciaciaNI) + 3o2p Lap691n (Pus)) = 0(v?). (5.13)

Equation (5.12) tells us that there is no mass diffusion (there is a single
species of particles). Equation (5.13) describes the momentum diffusion
over long (O(€~?)) time-scales. It has two contributions. The term involving
T.5,s comes from particle propagation and we will comment on it later.

The other term in equation (5.13) involves the deviations N,-(l) from
the equilibrium mean populations. N‘-(l) vanishes when the equilibrium
is uniform. It must therefore be a linear combination of gradients (with
respect to r;) of p and pu. Linear response theory is needed to calculate
the coefficients. At this point, we will only make use of symmetry arguments
to reduce the number of coefficients. We assume that u is small, so that
to leading order equilibria are invariant under the isometry group § of the
lattice (see section 2.4). Since the gradient of p is a vector and the gradient
of pu is a second-order tensor, properties P2 and P3 of section 2.4 allow
us to write

N‘-(l) = 0Cia 010 + ('/)Ciaciﬁ + X6aﬁ) ala(puﬂ)' (5'14)

By equation (5.2), we have o = 0 and ¢’ + Dy = 0. Note that ¢ should
depend on p, but not on u, since it is evaluated at u = 0. Substituting the

expression for N,-(l) into equation (5.13), we obtain

Ou(pua) + 3us [($(6) + 537 ) Taprsralpue) | = O(u). (5.15)
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In the sequel, it will be more convenient to collapse the set of four
equations, governing the evolution of p and pu on O(¢~!) and O(e™?) time-
scales, into a pair of equations, written in terms of the original variables ¢
and r (in their continuous version). We thus obtain the macrodynamical
equations

dp + 9p(pug) =0,

Bi(pua) + 95 (pG(0)Tup su us + %95«/9) (5.16)
+ 8p[(vlp) + ipiz) Tapys0s(pus)|

Ofex®) + O(€u?) + O(%u).

The equivalence of equations (5.16) and (5.17) to (5.6), {5.7), (5.12), and
(5.15) follows by equation (5.3). Note that equation (16) is the standard
density equation of fluid mechanics and that equation (5.17) already has a
strong resemblance to the Navier-Stokes equations.

6. Recovering isotropy

The macrodynamical equations (5.16) and (5.17) are not fully isotropic.
The presence of a lattice with discrete rotational symmetries is still felt
through the tensor

2
Tapss = 9 CiaCipQins = Y CiaCip (Ceqces - 5515) , (6.1)
i P

appearing in both the nonlinear and diffusive terms of (5.17). Furthermore,
the higher-order terms in the r.h.s. of equation (5.17) have no reason to be
isotropic. This should not worry us since they will eventually turn out to
be irrelevant. Contrary to translational discreteness, rotational discreteness
cannot go away under the macroscopic limit; the latter involves large scales
but not in any way “large angles”, since the group of rotations is compact.

We have seen in section 2.4 that tensors up to third order having the
same invariance group § as the discrete velocity set are isotropic. Not so for
tensors of fourth order such as T,4,s. Indeed, for the HPP model (section
2.1), explicit calculation of the momentum-flux tensor, given by equation
(5.8), is quite straightforward. The result is

P, =
pG(o) (v}~ ul) + £ + O(w*), Pur = pG(p)(u} - u}) + £+ O(u*), (6.2)
Py =Py =0, (6.3)
with
2—p

G(p) = "4—:—p- B (6'4)
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The only second-order tensors quadratic in the velocity being u,ug and
u - ud,p, the tensor P,g is not isotropic.

In order to eventually obtain the Navier-Stokes equations, the tensor
Twps given by equation (6.1) must be isotropic, that is, invariant under the
full orthogonal group. This tensor is pairwise symmetrical in (a, 8) and
(v, 6); from equation (6.1), it follows that it satisfies

1
> Taprr =0, > Tupap = be' (1 - ‘5) - (6.5)
v af

When the tensor T, is isotropic, these properties uniquely constrain it
to be of the following form:

bet

2
Toprs = DID12) (6a16ﬁ6 + 8asbpy — ""'5a.86‘16) . (6.6)

D
For general group-theoretical material concerning the isotropy of temsors
with discrete symmetries in the context of lattice gases, we refer the reader
to reference 39. Crucial observations for obtaining the two- and three-
dimensional Navier-Stokes equations are the isotropy of pairwise symmet-
rical tensors for the triangular FHP lattice in two dimensions and the face-
centered-hypercubic (FCHC) lattice in four dimensions, and thus also for
the pseudo-four-dimensional three-dimensional model. We give now ele-
mentary proofs of these results.

In two dimensions, it is convenient to consider To5,s as a linear map
from the space E of two-by-two real symmetrical matrices into itself:

T: Aap — Tapqu.,g. (67)

A basis of the space E is formed by the matrices Py, P;, and P, associated
with the orthogonal projections onto the z,-axis and onto two other direc-
tions at 27 /3 and 4x/3. In this representation, an arbitrary E-matrix may
be written as

A =x1 Py + X2 P2 + xsPs, (6.8)

and T becomes a three-by-three matrix Ty, {a,b = 1,2, 3). The key obser-
vation is that the hexagonal group (rotations by multiples of /3) becomes
the permutation group of Py, P;, and Fs. Thus, T, is invariant under
arbitrary permutations of the coordinates, i.e., is of the form

Tab P (}S diagab(l, 1, 1) —+ xlaba (69)

where diag,;(1, 1,1) is the diagonal matrix with entries one, 14 is the matrix
with all entries equal to one, and ¢ and x are arbitrary scalars. From
equation {6.8), we have

tr(A) = x1 + Xz + Xs» (6.10)

where tr denotes the trace. We also note that
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P1+P2+P3=(3/2)I, (6.11)

where I is the identity (check it for the unit vectors of the z; and z, axis).
Using equations {6.10) and (6.11), we can rewrite equation (6.9) as

T: AcsgA+ Sxu(A)l (6.12)

Reverting to tensor notations, this becomes

3x
Tupys = ( 885 + bas%p,) + — Sapbes; (6.13)
which is obvmusly isotropic.
We turn to the four-dimensional case, using the FCHC model of sec-
tion 2.3. Invariance under permutations of coordinates and reversal of any
coordinate implies that the most general possible form for T,4.5 is

Taprs = PbapOprybus + X (arbps + 6as844) + ¥ 8apbos. (6.14)

The x and v terms are already isotropic. The vanishing of ¢ is a conse-
quence of the invariance of the velocity set under the symmetry £ with
respect to the hyperplane z; + z2 + z3 + z, = 0, that is,

1
Tu = Tyg—0, 0= 3 Eza. (6.15)
o

Indeed, consider the vector v, = (2,0,0,0). Contracting the ¢ term four
times with v,, we obtain 16¢; the image of v, under £ is w, = (1,-1,—1,-1),
which contracted four times with the ¢ term gives 4¢. Thus, invariance re-
quires ¢ = 0, which proves isotropy.

We return to the general D-dimensional case, assuming isotropy. Substi-
tuting equation (6.6) into the macrodynamical momentum equation (5.17),
we obtain

3¢ (pua) + 95 (pg(p)uaup) + 0o (Cfﬂ (1 —a(p) g‘))

= 38 [(64(9) +15) (9(ps) + Bp(pma) — 5 8anrloup)|

+ O(er®) + O(u?) + O(’u), (6.16)
with
D b-2 . €
W)= 535, “T D
bet c?
o) = —porgtl) v = “2(D +2). (6.17)

Note that g(p) appearing in equation (6.17) is not the same as G(p) in-
troduced in equation (4.15). Note also that 1(p), which was introduced in
section 5, is still to be determined (see section 8).

We have now recovered macroscopic isotropy; equation (6.16) is very
closely related to the fluid dynamical momentum (Navier-Stokes) equations.
We postpone all further remarks to the next section.
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7. TFluid dynamical regimes

Let us rewrite the macrodynamical equations for mass and momentum,
derived in the previous sections in a compact form which brings out their
similarities with the equations of fluid dynamics:

dip + O (pttp) =0, (7'1)
3¢ (ptia) + OpPap = pSag + O(eu®) + O(*u?) + O(u). (7.2)

The momentum-flux tensor P,s and the viscous stress tensor S,g are given
by

P, =c2p (1 — g(p)'c‘—:) g + pg(p)uatis, (7.3)
and

Sas = v(p) (aa(puﬂ) + 3p(pua) %5,,ﬁa,(pu,,))

V(o) = vel0) + v, (7.4)

where g(p), ¢?, v,, and v, are defined in equation (6.17). Their values for
the FHP-I and FCHC models are given below:

3-»p 1 3 1
g9(p) = 6_ 5’ c; = 2’ ve(p) = “Z'/’(P)s =% for FHP-1
412—p

g(p) = 3

1 1
321_, T2 ve(p) = ~4¥(p), vp=—7, for FCHC.

(7.5)

Various remarks are now in order. When the velocity u is very small,
the momentum-flux tensor reduces to a diagonal pressure term pbag with
the pressure given by the “isothermal” relation

p=cp. (7.6)

From this, we infer that the speed of sound should be ¢,, namely 1 / V2 for
FHP-I and FCHC.

The momentum-flux tensor in the “real world” is P, = pbap + puastp.
This form is a consequence of Galilean invariance, which allows one to
relate thermodynamic equilibria with vanishing and nonvanishing mean
velocities. The lattice gas momentum-flux tensor (7.3) with nonvanishing
velocity differs by an additive term in the pressure and a multiplicative
density-dependent factor g(p) in the advection term. We will see later in
this section how Galilean invariance can nevertheless be recovered.

Equation (7.4) is the stress-strain relation for a Newtonian fluid having
kinematic viscosity v, + v, and vanishing bulk viscosity [64]. The traceless
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character of S,s (which implies this vanishing of the bulk viscosity) comes
from the traceless character of Q;,s, defined by equation (4.15); this result
would be upset by the presence of rest particles such as exist in the models
FHP-II and III (see Appendix E). The kinematic viscosity has two con-
tributions. One is the “collision viscosity” v,, not yet determined, which
depends on the details of the collisions and is positive (see section 8). The
other one is the “propagation viscosity” v,, which is negative and does not
involve the collisions. The presence of such a negative propagation viscosity
is an effect of the lattice discreteness [42].

The general strategy by which standard fluid dynamical equations are
derived from equations (7.1) and (7.2) is to rescale the space, time, and
velocity variables in such a way as to make undesirable terms irrelevant
as € — 0. Three different regimes will be considered in the following
subsections. They correspond respectively to sound propagation, sound
propagation with slow damping, and incompressible (Navier-Stokes) fluid
dynamics.

7.1 Sound propagation

Consider a weak perturbation of the equilibrium solution with density p,
and velocity zero. We write

p=po+p. (7.7

In a suitable limit, we expect that the only relevant terms in equations (7.1)
and (7.2) will be®

Ap' +poV-u=0

podiu + ¢iVp' = 0, (7.8)
Formally, this regime is obtained by setting

r=¢'r, t=¢lt, p=¢p, u=eU, a>0. (7.9)

It is then straightforward to check that the leading order terms take the
form of equations (7.8) (in the rescaled variables). Eliminating u in equa-
tion (7.8), we obtain the scalar wave equation

32

-é——t—zp' — Vi =0. (7.10)

In other words, density and velocity perturbations with amplitudes o(1) on
temporal and spatial scales O(€} propagate as sound waves with speed ¢, .1°
Since the present regime of undamped sound waves involves only tensors
of second order, it also applies to the HPP model.

?From here on, we use vector notation whenever possible.
0We have used here the Landau O() and o() notation.
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7.2 Damped sound

Another regime includes the viscous damping term, so that instead of equa-
tion (7.8), we should have

' +pV-u=0

D-2

poBu + €2V p' = por(po) (V’u + vv. u) . (7.11)

To obtain this regime, we proceed as in section 7.1 and include an additional
time t, = €2t. Furthermore, in the scaling relation (7.9) we now require
a > 1, that is, u and p' should be o(¢); otherwise, the nonlinear term also
becomes relevant. Note that the damping is now on a time scale O(e2).
Since propagation and damping are on time scales involving different powers
of €, it is not possible to describe them in a single equation without mixing
orders.

7.3 Incompressible fluid dynamics: the Navier-Stokes equations

It is known that many features of low Mach number?! flows in an ordinary
gas can be described by the incompressible Navier-Stokes equation

du+u-Vu=-—Vp+rvVi
V-u=0. (7.12)

In the “real world”, the incompressible Navier-Stokes equation can be de-
rived from the full compressible equations, using a Mach number expansion.
There are some fine points in this expansion for which we refer the inter-
ested reader to reference 65. Ignoring these, the essential observation is
that, to leading order, density variations become irrelevant everywhere ex-
cept in the pressure term; the latter becomes slaved to the nonlinear term
by the incompressibility constraint.

Just the same kind of expansion (with the same difficulties) can be ap-
plied to lattice gas dynamics. We start from equations (7.1) and (7.2) and
freeze the density by setting it equal to the constant and uniform value pq
everywhere except in the pressure term, where we keep the density fluctu-
ations. We also ignore all higher-order terms O(e’u), etc. This produces
the following set of equations:

2
u
podett + pog(po)u - Vu = —e;V(p' — p(0)a(po) ) + por(po) V'u

V.u=0. (7.13)

11The Mach number is the ratio of a characteristic flow velocity to the speed of sound.
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The resulting equations (7.13) differ from equation (7.2) only by the pres-
ence of the factor g(py) in front of the advection term u-Vu. As it stands,
equation (7.13) is not Galilean invariant. This, of course, reflects the lack
of Galilean invariance at the lattice level. Similarly, the vanishing of ¢(po)
when the density per cell d = pg /b is equal to 1/2, i.e., for equal mean num-
bers of particles and holes, reflects a duality-invariance of the lattice gas
without counterpart in the “real world” (see end of section 4.2). However,
as soon as d < 1/2, it is straightforward to reduce equation (7.13) to the
true Navier-Stokes equations (7.12); it suffices to rescale time and viscosity:

t
t — m, v — g(po)r. . (7.14)

Now we show that there is actually a rescaling of variables which re-
duces the macrodynamical equations to the incompressible Navier-Stokes
equations. We set

. 1
~ g(po)

r=¢r, t €T, u=€U,

(r' — p(0)g(po) ,:_22) = %&po)—sz’, v = g(po)V'. (7.15)

8

Thus, all the relevant terms are O(e?) in equation (7.1) and O(€®) in equa-
tion {7.2). The higher-order terms in the r.h.s. of equation (7.2) are O(€*)
or smaller. In this way, we obtain to leading order (V, denotes the gradient
with respect to r,)

8rU+ U -V,U=—-V,P +/VIU
V1 - U — 0, (7.16)

which are exactly the incompressible Navier-Stokes equations.

Various comments are now made. The expansion leading to equation
(7.16) is a large-scale and low Mach number expansion (the former is here
inversely proportional to the latter). It also follows from the scaling re-
lations (7.15) that the Reynolds number is kept fixed. It is not possible
within our framework to have an asymptotic regime leading to nonlinear
compressible equations at finite Mach number. Indeed, the speed of sound
is here a finite fraction of the particle speed, and it is essential that the
macroscopic velocity be small compared to particle speed, so as not to be
contaminated by higher-order nonlinearities. It is noteworthy that models
can be constructed having many rest particles (zero-velocity) with arbitrar-
ily low speed of sound.

In a pure Navier-Stokes context, the non-Galilean invariance at the mi-
croscopic level is not a serious difficulty; as we have seen, Galilean invariance
is recovered macroscopically, just by rescaling the time variable. However,
when the models discussed here are generalized to include, for example,
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multi-phase flow or buoyancy effects, a more serious problem may arise
because the advection term of scalar quantities, such as chemical concen-
trations or temperature, involves usually a factor g(p) different from that
of the nonlinear advection term in the Navier-Stokes equations. Various
solutions to this problem have been proposed [48,66].

There is a variant of our formalism, leading also to the incompressible
Navier-Stokes equations, but in terms of the mass current j = pu rather
than the velocity u. The analog of equation (7.13) (without rescaling) is
then

j + gE,po—)j +Vj = —e;Vo' + v{po) V'
[

V.j=o. (7.17)

Since j and g{po)/po change sign under duality, equation (7.17) brings out
duality-invariance.!? A more decisive advantage of the j-representation
is that it gives a better approximation to the steady state Navier-Stokes
equations when the Mach number is only moderately small. This is because
in the steady state the continuity equation implies exactly V -j = 0.

In three dimensions, when we use the pseudo-four-dimensional FCHC
model, there are three independent space variables r = (z;, %3, zs), but four
velocity components:

U; = (U,Uy) = (U1, Uz, Us, Uy). (7.18)

The four-velocity U satisfies the four-dimensional Navier-Stokes equations
with no z,-dependence. Thus, the three-velocity U satisfies the three-
dimensional Navier-Stokes equations (7.16),}* while Uy satisfies (note that
the pressure term drops out)

aTU4 + U- V1U4 = U,V§U4. (7.19)

This is the equation for a passive scalar with unit Schmidt number (ratio
of viscosity to diffusivity).

Finally, we refer the reader to Appendix D for the inclusion of body
forces in the Navier-Stokes equations.

121n the u-representation, duality-invariance is broken because we have decided to work
with the velocity of particles rather than with that of holes.

13Since the velocity set of the pseudo-four-dimensional model is the same as in four
dimensions, isotropy is ensured for all fourth-order tensors depending only on the velocity
set. Thus, the nonlinear term has the correct isotropic form. The viscous term is isotropic
within the Boltzmann approximation (see section 8.2}; otherwise, deviations from isotropy
are expected to be small [2].
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8. The viscosity

All the macroscopic equations derived in section 7 have a universal form
which does not depend on the details of collisions. The kinematic shear
viscosity v, which we will henceforth call the viscosity, does not possess
this universality. Transport coefficients such as the viscosity characterize
the linear response of equilibrium solutions to small externally imposed
perturbations. It is known in statistical mechanics that the relaxation
(or dissipation) of external perturbations is connected to the fluctuations
at equilibrium via fluctuation-dissipation relations. Such relations have a
counterpart for lattice gases. Two quite different approaches are known.
In section 8.1, following a suggestion already made in [23], we present the
“noisy” hydrodynamics viewpoint, in the spirit of Landau and Lifschitz
[67,68]. Another approach, in the spirit of Kubo [69] and Green [70], using
a Liouville equation formalism, may be found in reference 43. In section 8.2,
we introduce the lattice analog of the Boltzmann approximation, which al-
lows an explicit calculation of the viscosity. In section 8.3, we discuss some
implications for the Reynolds numbers of incompressible flows simulated
on lattice gases.

8.1 Fluctuation-dissipation relation and “noisy” hydrodynamics

We first explain the basic ideas in words. Spontaneous fluctuations at equi-
librium involve modes of all possible scales. The fluctuations of very large
scales should have their dynamics governed by the macroscopic equations
derived in sections 5 through 7. Such fluctuations are also expected to be
very weak, so that linear hydrodynamics should apply. Large-scale spon-
taneous fluctuations are constantly regenerated, and in a random manner;
this regeneration is provided by a random force (noise) term which can be
identified and expressed in terms of the fluctuating microscopic variables.
If this random force has a short correlation-time (i.e., small compared to
the life-time of the large-scale fluctuations under investigation), then each
large-scale mode v has its dynamics governed by a Langevin equation.!* It
follows that the variance (v?) can be expressed in terms of the damping
coefficient - (related to the viscosity) and of the time-correlation function
of the random force. Alternatively, the variance {v?) can be calculated from
the known one-time equilibrium properties. Identification gives the viscos-
ity in terms of equilibrium time-correlation functions. This is the general
program that we now carry out for the special case of lattice gases. We
restrict ourselves to equilibrium solutions with zero mean velocity.

We will use in this section the following notation. The density p and the
mass current j are no longer given by their expressions (3.24) in terms of
the mean populations; instead, they are defined in terms of the fluctuating
Boolean field

MFor the case of lattice gases, we will actually obtain a finite difference equation.
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p(te, 1) = Z:n,-(t*, r.), j{tard = Z:c.-n.-(t*, r.). (8.1)

We denote by fi; the fluctuating part of the Boolean field, defined by
ni(t*; rt) =d+ ﬁ'i(t*, I‘*), (8-2)

where d is the density per cell.

We introduce meso-averaged fields by taking spatial averages over a a
distance € 1.15 These will be denoted by angular brackets with the subscript
ma. The meso-averages of n;, p, and j are denoted #;, 5, and j respectively.
Locally, the equilibrium relation (4.14) should hold approximately for the
meso-averaged populations. We thus write

m=24 23 et b+ a0, (8.3)
5; represents the (still unknown) input from non-hydrodynamic fluctua-
tions; A" is the contribution analogous to eN in equation (5.1), aris-
ing from the gradients of meso-averages. Note that in equation (8.3) we
dropped contributions nonlinear in the mass current; indeed, we should be
able to determine the viscosity from just linear hydrodynamics.®

We now derive the equations for noisy hydrodynamics. As usual, we
start from the microscopic conservation relations (3.16) and (3.17) and we
take their meso-averages:

Yo((te + L ru + ) — it )] =0, (8.4)
Zj ci[fi(te + 1,14 + €;) — A(ts, )] = 0. (8.5)

Substituting equatino (8.3) into equation (8.5), we obtain

1 D - z
3 Y cilp(tat1,rutei)—p(ts, r*)]+-c~,-3 Y cico[i(t 41, rotci)=j(ts, 1)

+ Y ar® (. + 1,1, + ;) — 2t 1)] = £(ta,T), (8.6)
where
f(t*, r*) = - E C,‘[&,‘(t* +1,r.+ C,‘) — & (t*,l'*)] (8.7)

is the random force. Using equations (8.1) through (8.5}, we can also write
(to leading order in gradients)

18More precisely, by dropping spatial Fourier components with wavenumber &k > e.
18 This is not exactly true in two dimensions as we will see below.
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f(t.,r.) =

1 ~ -~
(?I; Z (czc,' + Dc; - ¢; C.') [n,-(t* +1,r.+¢) — nj(t* +1,r. + Cj)])

(8.8)

The Lh.s. of equation (8.6) is expanded in powers of gradients (i.e., of
€), as we did in section 5. However, we keep finite differences rather than
derivatives in time because of the presence of the rapidly varying random
force. Since we only want to identify the shear viscosity (the bulk viscosity
is zero), it suffices to extract the solenoidal part of the hydrodynamical
equation. For this and other reasons, it is better to work in Fourier space.
We define the (spatial) Fourier transform of the fluctuating Boolean field
by

i(te, 1) = Y €5 4i(t,, k), (8.9)
k

where the components of k are multiples of 27 divided by the lattice peri-
odicities in the various directions. We similarly define j and f, the Fourier
transforms of the mass current and the random force. Their solenoidal
parts, projection on the hyperplane perpendicular to k, are denoted j; and
f.

To leading order in k, we obtain from equation (8.8) using equation
(2.5)

A . c;-kk\ .

f, (t., k) = — Z:k - ¢ (c,— - "’_ﬁ_) fi;(t. + 1,k). (8.10)
7

The meso-averaging is just the restriction that k < e. Fourier transforming

equation (8.6) and taking the solenoidal part, we obtain for small k

Ji(te +1,k) = Ji (¢, K) + vk (t., k) = £ (¢, K). (8.11)

This is our discrete Langevin equation. Note that v is the (total) viscosity
v = v, +V,. In principle, we must expand to second order in k to obtain the
viscous terms, but we could as well have written the L.h.s of equation (8.11)
a priori, since we want to use equation (8.11) to determine the viscosity.
It is straightforward to solve the linear finite-difference equation (8.11).
From the solution, we calculate the variance of j , and obtain, when the
viscous damping time 1/(vk?} is large compared to the correlation time of
the random force

to=+4+00

<Bl(t*’k)lz> - 2l/lk2 . E (f.L(tﬂk) : fi(t*,k)) (8.12)

«=—00

where the asterisk denotes complex conjugation. The variance of 3 L can
also be calculated directly using equation (8.1) and
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(Rilts, p.)7(L., 0)) = (R})6:6,.
(Al = (nd) — (n)? = d — &, (8.13)

where §,, denotes a Kronecker delta in the spatial separation p,. We obtain
-~ 2 1 D - 1

(b 1t k)| ) = beld(1 - )=, (8.14)
where V denotes the total number of lattice points in the periodicity vol-
ume, Thus, the L.h.s. of equation (8.12) is k-independent. We evaluate
the r.h.s of equation (8.12) in the limit ¥ — 0, using equation (8.10). We
skip some intermediate steps in which we (i) use the stationariness of the
fluctuations at equilibrium, (ii) use the isotropy of second- and fourth-order
symmetrical tensors, (iii) interchange the k — 0 limit and the infinite sum-

mation over t,.!” Identifying the two expressions (8.12) and (8.14), we
obtain for the viscosity

D 1 1 1
2(D—1)(D+2)be?d(t —d) V

fo=+00

> D QiapQjas (ﬁ;(t*,O)ﬁ;- (o, 0))

t.=—o0ijaf
D —1— I t.ioo
2(D-1)(D +2) b2 d(1—4d),,

=—00

> D QiapQiap (fislts, .)75(0,0)) (8.15)

pEL ijaB

with

2
Qiaﬂ = CiaCig — %‘Saﬂ- (8.16)
This completes the fluctuation-dissipation calculation of the viscosity.
A consequence of the Fourier-space representation (the upper half of equa-
tion (8.15)) is the positivity of the viscosity; indeed, the viscosity is, within a
positive factor, the time-summation of the autocorrelation of ¥; Qins7: (¢4, 0).
Several comments are now in order. It is easily checked that thet, =0
contribution to the viscosity (lower part of equation (8.15) is ¢?/(2{D +2)),
that is, just the opposite of the “propagation viscosity” v, introduced in
section 7. The viscosity is the sum of the collision viscosity v, and v,. Using
the identity

hzim Z(t.) = 2h=i°° Z(t.) — Z(0), (8.17)

17This is equivalent to assuming that the viscosity is finite, see below.
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(for an even function Z(t.)), we find that v, has a representation similar to
(8.15) (lower part), with an additional factor of 2 and the summation over
t, extending only from O to co. We thereby recover an expression derived
in reference 43, using a discrete variant of the Green-Kubo formalism. It
is reassuring to have two completely different derivations of the viscosity,
since we consider our fluctuation-dissipation derivation somewhat delicate.

It is of interest that the fluctuation-dissipation derivation gives directly
the (total) viscosity. This suggests that the splitting into collision and
propagation viscosities is an artifact of our multi-scale formalism.

There is no closed form representation of the correlation function

{#i(t«, p)71;(0,0)), except for short times. However, (8.15) is a good start-
ing point for a Monte-Carlo calculation of the viscosity [43].

In our derivation, we have dropped all contributions from nonlinear
terms in the mass current j. Is this justified? If we reinstate the nonlinear
terms, we obtain, for the solenoidal part of the meso-averaged mass cur-
rent, the Navier-Stokes equations (7.17) of section 8 with the additional
random force given in the Fourier representation by equation (8.10). On
macroscopic scales, this force may be considered as §-correlated in time.
Its spectrum follows, for small k, a kP*! power-law.?® The Navier-Stokes
equations with this kind of power-law forcing is one of the few problems in
nonlinear statistical fluid mechanics which can be systematically analyzed
by renormalization group methods [71,72]. For D > 2, the nonlinear term is
irrelevant for small k so that our calculation of the viscosity is legitimate. At
the “crossover” dimension D = 2, the nonlinear term becomes “marginal”;
it produces a renormalization of the viscosity which is then logarithmically
scale-dependent. Thus, in the limit of infinite scale-separation, the viscos-
ity becomes infinite in two dimensions. This is an instance of the known
divergence of transport coefficients in two-dimensional statistical mechan-
ics [68,73]. Alternatively, the divergence of the viscosity in two dimensions
can be viewed as due to the presence of a “long-time-tail”, proportional to

:P/% in the correlation function appearing in equation (8.15). Attempts
have been made to observe long-time-tails and scale-dependence of the vis-
cosity in Monte-Carlo simulations of lattice gas models [8,23,43,44]. This
is not easy because (i) the effects show up only at very long times (or large
scales) and may then be hidden by Monte-Carlo noise (insufficient averag-
ing), and (ii) the effects should get weaker as the number b of cells per node
increases (see end of section 8.2).

Finally, the noisy hydrodynamics formalism can be used to estimate to
what extent the microscopic noise contaminates the hydrodynamic macro-
scopic signal. Estimates, assuming the signal to be meso-averaged in space
and time, have been made in the context of fully developed incompressible
two- and three-dimensional turbulence.’® It has been found that in two
dimensions noise is relevant only at scales less than the dissipation scale,

18A factor k? comes from the average squared Fourier amplitude and another factor
kP! from the D-dimensional volume element.
19Note that in the incompressible case, only solenoidal noise is relevant.



Lattice Gas Hydrodynamics in Two and Three Dimensions 685

while in three dimensions this happens only far out in the dissipation range
[74].

8.2 The Lattice Boltzmann approximation

Explicit calculation of transport coefficients can be done for lattice gases,
using the Boltzmann approximation. In this approximation, one assumes
that particles entering a collision process have no prior correlations. The
microdynamical formalism of section 3.1 is particularly well suited for deriv-
ing what we will call the lattice Boltzmann equation. We take the ensemble
average of equation (3.9). The Boolean variables n; become the mean pop-
ulations N;. The average of the collision function A; can be completely
factorized, thanks to the Boltzmann approximation. We obtain

Ni(t* + Iar* + C") = N;-(t*, I'*) + A‘_Bon.

APt =3 (s — 8)A(s — &) H N (1= N;)=es), (8.18)

Here, all the N;’s are evaluated at ¢, and r.. The A(s — §')’s, the transition
probabilities introduced in section 2.4, are the averages of the Boolean
transition variables £,,,. Note that the (Boltzmann) collision function A7***
vanishes at equilibrium.

The Boltzmann approximation in ordinary gases is associated with low
density situations, when the mean-free path is so large that particles enter-
ing a collision come mostly from distant uncorrelated regions. The Boltz-
mann approximation for a lattice gas appears to have a very broad validity,
not particularly restricted to low densities.?® We will come back to the
matter at the end of this section.

Our lattice Boltzmann equation (8.18) is a finite difference equation.
There is a differential version of it, obtained by Taylor-expanding the finite
differences to first order, namely

ON; +¢;-VN; = A:-m" (8.19)

where A?*** is defined as in equation (8.18). Boltzmann equations of the
form (8.19) have been extensively studied as discrete velocity approxima-
tions to the ordinary Boltzmann equation [15-17,19]. The (differential)
Boltzmann formalism has been applied to various lattice gas models [35,39].
This formalism correctly captures all hydrodynamic phenomena involving
only first-order derivatives. Indeed, for these, we have seen that only the
equilibrium solutions matter, and the latter are completely factorized. Dif-
fusive phenomena involve second-order derivatives. Hence, the propagation
viscosities (see section 7), which are an effect of lattice-discreteness, are not

20Even at low densities, the Boltzmann approximation may not be valid. Indeed, without
effectively changing the dynamics, we can reduce the density by arbitrary large factors by
having the particles initially located on a sub-lattice with some large periodicity; these
are, however, pathologically unstable configurations.
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captured by the {differential) Boltzmann equation. At low densities, where
collision viscosities dominate over propagation viscosities, the discrepancy
is irrelevant.

We do not intend to engage in extended discussions of the consequences

of the lattice Boltzmann equation because most of the derivation of the
hydrodynamical equations is independent of this approximation. There are,
however, two important results which follow from the lattice Boltzmann
equation. The first concerns the irreversible approach to equilibrium. It is
derived by adapting an H-theorem formalism to the fully discrete context
{see Appendix F by Hénon).
- The second result is an explicit derivation of the viscosity. From the
Boltzmann equation, this is usually done by a Chapman-Enskog formal-
ism [75,76] (see also Gatignol’s monography, [17]). This formalism is easily
adapted to the lattice Boltzmann equation [77]. With the general multi-
scale formalism of sections 5 through 7, we have already covered a substan-
tial fraction of the ground. Furthermore, an alternative derivation which
stays completely at the microscopic level is presented in this volume by
Hénon, who also discusses consequences of his explicit viscosity-formula
[42]. We will therefore be brief.

The problem of the viscosity amounts to finding the coefficient t relating
the gradient of the mass current pu to the first-order perturbation M(l) of
the mean population, through (see equation {5.14} of section 5)

(1) = wQsaﬁala (pu'ﬂ)
Qiaﬁ CiaCig — e 6aﬂ (8.20)

We start from equation (5.1) with N,-(o) given by equation (4.14). We substi-
tute into the lattice Boltzmann equation (8.18) and identify the terms O(e).
For this, we Taylor-expand finite differences to first order, use equations
(5.6) and (5.7) to express time-derivatives in terms of space-derivatives,
and ignore all terms beyond the linear ones in the velocity. We obtain

D
Qcaﬁala pu’ﬁ) Z AUN(I) (8.21)
Here,
aA?olh
= | 255 (8.22)
=p/b

is the linearized collision matrix, evaluated at the zero-velocity equilibrium,
which can be expressed in compact form as [42]

5= =y Dlosi = D As = )1 = sy — ),

sa'

p= Zs.—. (8.23)



Lattice Gas Hydrodynamics in Two and Three Dimensions 687

We eliminate N'-(l) between equations (8.20) and (8.21), to obtain

D
inaﬁ -9 z Ai;Qjas | Pra(pup) = 0. (8.24)
1

This should hold for arbitrary gradients of the mass current. Thus, the
quantity between square brackets vanishes. This means that, for any («, 8),
Qiap, considered as a vector with components labeled by 1, is an eigenvector
of the linearized collision matrix with eigenvalue D/{bc?4); a direct proof
of this may be derived from the G-invariance. From equation (8.24), we can
easily calculate ¢; the simplest method is to multiply the vanishing square
bracket by Q;,s and sum over ¢, ¢, and 8. If, in addition, we assume the
isotropy of fourth-order tensors, we can use equation (6.17) to obtain a
closed-form expression for the collision viscosity
- Cz z:l'aﬁ Q?aﬂ
D+ 2308 QiapRisQiap

In Appendix E, we give explicit formulae calculated from equation (8.25)
for the viscosities of the FHP models (including those with rest particles
which require minor amendements of our formalism).

We finally address the question of the validity of the lattice Boltz-
mann equation. Comparisons of the viscosities obtained from simulations
[25,29,31,33] or Monte-Carlo calculations [77] with the predictions of the
lattice Boltzmann approximation suggest that the validity of the latter is
not limited to low densities. We know that equilibrium solutions are factor-
ized and that transport coefficients can be calculated with arbitrarily weak
macroscopic gradients. However, this cannot be the basis for the validity of
the Boltzmann approximation: a weak macroscopic gradient implies that
the probability of changing the state of a given node from its equilibrium
value is small; but when such a change takes place, it produces a strong
microscopic perturbation in its environment. Otherwise, there would be no
(weak) divergence of the viscosity in two dimensions; indeed, the Boltzmann
approximation does not capture noise-induced renormalization effects (see
end of section 8.1). A more likely explanation of the success of the lattice
Boltzmann approximation may be that it is the leading order in some kind
of 1/b expansion, where b is the number of velocity cells at each node. At
the moment, we can only support this by the following heuristic argument.
Deviations from Boltzmann require correlations between particles entering
a collision. The latter arise from previous collisions;*! when b is large, the
weight pertaining to such events ought to be small.

v, = (8.25)

8.3 The Reynolds number

Knowing the kinematic shear viscosity in terms of the density and the
collision rules, we can calculate the Reynolds number associated to a large-
scale flow.

21Collisions produce correlations whenever the particles are not exactly at equilibrium.
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A natural unit of length is the lattice constant (distance of adjacent
nodes), which has been taken equal to one for the two-dimensional HPP
and FHP models. The four-dimensional FCHC model has a lattice con-
stant of v/2, but its three-dimensional projected version, the pseudo-four-
dimensional FCHC model, resides on a cubic lattice which has also unit
lattice constant. The time necessary for microscopic information to prop-
agate from one node to its connecting neighbors defines a natural unit of
time. We then have a natural unit of velocity: the speed necessary to travel
the lattice constant (or the projected lattice constant for the pseudo-four-
dimensional model) in a unit time. In these units, the characteristic scale
and velocity of the flow will be denoted by £, and uy.

The standard definition of the Reynolds number is

characteristic scale x characteristic velocity

R = . 8.26
kinematic shear viscosity ( )

In deriving the Navier-Stokes equations in section 7.3, we rescaled space,
time, velocity, pressure, and viscosity (cf. equation (7.15)}. The rescaling
of space (by €) and of velocity (by ¢™!) cancel in the numerator of equation
(8.26). The rescaled viscosity is #'{po) = v(po)/g(p0). Hence, the Reynolds
number is

g(po)
R ={4u . 8.27
0 V(PO) ( )
In order to operate in an incompressible regime, the velocity % should be
small compared to the speed of sound c¢,. The latter is model-dependent:
C, = 1/\/5 for FHP-1 and FCHC, ¢, = +/3/7 for FHP-II and FHP-III

(see section 7 and Appendix E). Let us therefore re-express the Reynolds
number in terms of the Mach number

- Yo
M= . (8.28)
We obtain
R = M&R.(po), . (8-29)
where
Rufpo) = “22) (8.30)

contains all the local information.

In flow simulations using lattice gases, it is of interest to operate at the
density which maximizes R,. Let us work this out for the simplest case
of FHP-I. For the viscosity, we use the lattice Boltzmann value given in
Appendix E. We have

11— 2d 1 1 Po
_1lzze - - 4= 8.3
9lpo) = 57— Y= anap T w 6 (8:31)
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Here, d is the mean density per cell. Substituting in equation (8.30), we
find that

R™* = max R, = 0.387, for d=d,., =0.187. (8.32)

Results for FHP-II and FHP-III are given in Appendix E. Note that a gain
of about a factor 6 is achieved in going from FHP-I to FHP-III, because
the latter includes many more collisions. For the pseudo-four-dimensional
FCHC model there is work in progress on the optimization of collisions. It
is already known that R== is at least 6.4 [78].

High Reynolds number incompressible turbulent flows have a whole
range of scales. The smallest effectively excited scale is called the dissi-
pation scale and denoted £,. It is then of interest to find how many lattice
constants are contained in #4, since this will determine how effective lattice
gases are in simulating high Reynolds number flows [1,36]. For this, let
£, denote the integral scale of the flow. Between £, £4, and the Reynolds
number R, there is the following relation

%‘ =CR™,. (8.33)

m = 1/2 in two dimensions and m = 3/4 in three dimensions; C is a dimen-
sionless constant not given by theory. In two dimensions, equation (8.33) is
a consequence of the Batchelor-Kraichnan {79,80] phenomenological theory
of the enstrophy cascade, which is well supported by numerical simulations
[81]. In three dimensions, equation (8.33) follows from the Kolmogorov (82]
phenomenological theory of the energy cascade, which is well supported??
by experimental data [83]. Using equations (8.29) and (8.33) and assuming
that R, has its maximum value R*, we obtain

fy=C(MR>=)"3 € = C(MR=>*)""R} in2D, (8.34)

and

FNC

ts= C(MR=)"1gf =C(MR;*)™ R% in3-D. (8.35)
In all cases, we see that £; — oo as R —+ oo, but more slowly in three than
in two dimensions. We are thus assured that at high Reynolds numbers the
separation of scale between the lattice constant and €4 necessary for hydro-
dynamic behavior is satisfied. Having it too well satisfied may however be
a mixed blessing, as stressed in reference 36. Indeed, in hydrodynamic sim-
ulations using lattice gases, it is not desirable to have too much irrelevant
microscopic information. We note that £, appears in equations (8.34) and
(8.35) with a larger exponent in the two-dimensional case; thus, the above
mentioned problem is most severe for large lattices in two dimensions.

22Small intermittency corrections which would slightly increase the exponent m cannot
be ruled out.
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The highest Reynolds number which can be simulated by lattice gas
methods in three dimensions can be estimated as follows. We take M = 0.3,
a Mach number at which compressibility effects can be safely ignored [84];
we take the maximum known value R?* = 6.4 for the FCHC model, and we
take £, = 10°, a fairly large value which implies a memory requirement of at
least 24 gigabits; from equation (8.29), we find that the maximum Reynolds
number is about two thousand. It is of interest both in two and three
dimensions to try to decrease the viscosity, thereby increasing R®*. Note
that it is not correct to infer from dimensional analysis that necessarily R=**
must be O(1). R™= is very much a function of the complexity of collisions.
For example, by going from FHP-I to FCHC (which can also be projected
down to two dimensions), R™** increases more than sixteen times.

9. Conclusion

In statistical mechanics, there are many instances where two models, mi-
croscopically quite different, have the same large-scale properties. For ex-
ample, the Ising model and a real Ferromagnet have presumably the same
large-scale critical behavior. Similarly, the lattice gases studied in this pa-
per, such as FHP and FCHC, are macroscopically indistinguishable from
real fluids. This provides us with an attractive alternative to the tradi-
tional simulations of fluid mechanics. In lattice gas simulations, we just
manipulate bits representing occupation of microscopic cells. The physical
interpretation need not be in terms of particles moving and colliding. The
idea can clearly be extended to include processes such as chemical reactions
or multi-phase flow [53-57]. An open question is whether there are cellular
automata implementations of processes which in the real world do not have
a discrete microscopic origin, such as propagation of e.m. waves. More
generally, what are the PDEs which can be efficiently implemented on cel-
lular automata? We emphasize efficiently, because there are always brute
force implementations: replace derivatives by finite differences on a regular
grid and use finite floating point truncations of the continuous fields. The
result may be viewed as a cellular automaton, but one in which there is no
“bit democracy”, insofar as there is a rigid hierarchical order between the
bits.

Our derivation of hydrodynamics from the microdynamics leaves room
for improvement. A key assumption made in section 4.1 may be formulated
as follows. Among the invariant measures of the microdynamical equations,
only the completely factorized ones (which play the role here of the micro-
canonical ensemble) are relevant in the limit of large lattices. On a finite
lattice with deterministic and invertible updating rules, we expect that
there are many other invariant measures. Indeed, phase space is a finite
set and updating is a permutation of this set; it is thus unlikely that there
should be a closed orbit going through all points. So, we do not expect the
discrete equivalent of an ergodic theorem. Anyway, ergodic results should
be irrelevant. On the one hand, on an L x L lattice with b bits per node, its
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takes 2°%° updates to visit all configurations (if they are accessible). On the
other hand, we know (from simulations) that local equilibrium is achieved
in a few updates and global equilibrium is achieved on a diffusive time scale
(approximately L?). We believe that, on large lattices, the factorized equi-
librium distributions constitute some kind of “fixed point” to which there is
rapid convergence of the iterated Boolean map defined by the microdynam-
ical equations of section 3.1. Understanding this process should clarify the
mechanism of irreversibility in lattice gases and, eventually, in real gases.
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Appendix A. Basic symmetries of HPP, FAP, and FCHC mod-
els

We show that the models HPP, FHP, and FCHC, introduced in section 2,
satisfy the symmetry assumptions (1) through (4) of section 2.4. Assump-
tions (1) and (2) are obvious for all three models. Let us consider (3) and
(4) successively for the three models.

HPP

Let us take the x; axis in the direction of the vector c;. The isometry
group G of the velocity set is generated by permutations of the z, and
7, coordinates and reversals of any of them. Clearly, any two vectors ¢;
and c; can be exchanged by some isometry, so that assumptions (3) holds.
Consider a particular vector, say, ¢;. The subgroup §i, leaving c; invariant
reduces to the identity and reversal of z; this implies parts (a) and (b) of
assumption (4).

FHP

Let us take the z, axis in the direction of ¢;. The isometry group G is now
generated by rotations of 7 /3 and reversal of the z; coordinate. Assumption
(3) is obvious. The subgroup §G; reduces again to the identity and the
reversal of z,, so that (4) follows.
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FCHC

The FCHC lattice was defined in section 2.3 with explicit reference to co-
ordinates z;, T3, =3, and z4. In this coordinate system, the velocity set is
formed of

(£1,41,0,0), (£1,0,41,0), (+1,0,0,+1)

(0,41,41,0), (0,41,0,%1), (0,0,+1,+1). (A.1)

By the orthonormal change of variables

11 1 1 0 o0 e
v2 | __1__ -1 1 0 O g
ys | v21 0 0 1 1 zs |’ (A.2)
Y4 c 0 -1 1 Ty

the velocity set becomes

(£v2,0,0,0), (0,4v2,0,0), (0,0,+v2,0), (0,0,0,+2),

1 1 1 1
t—, =, +—, +—=). A3
VORIV Ao, ) (A-3)
The isometry group § is generated by permutations and reversals of the z,

coordinates and by the symmetry with respect to the hyperplane z; + 2, +
z3 + z4 = 0, which is conveniently written in terms of y, coordinates as

E: (vi¥2¥s,v4) — (—ys, 2, VY1, Yd)- (A.4)

Assumption (3) is obvious in any of the coordinate systems. As for assump-
tion (4), let us consider the subgroup §; leaving invariant, say, the vector
with y, coordinates (0,0,0,1/+/2). The restriction of §; to the hyperplane
v+ = 0 is generated by the identity, permutations, and reversals of y,, y,,
and y3. Assumptions (a} and (b) follow readily.

Appendix B. Symmetry-related properties

Using assumptions (1) through (4) of section 2.4, we prove properties P1
through P8.

P1 Parity-invariance. The set of velocity vectors is invariant under space-
reversal.

Indeed, on a Bravais lattice, vectors connecting neighboring nodes
- come in opposite pairs.

P2 Any set of --dependent vectors v;,, which is G-invariant, is of the form
AC,‘a.
We write v; as the sum of its projection on ¢; and of a vector perpen-
dicular to ¢;. This decomposition being G-invariant, the latter vector
vanishes by (4a).
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P3 Any set of i-dependent tensors ti,g, which is G-invariant, is of the
form Ac;aCip + Hdup-

To the tensors ¢;,3, We associate the linear operators T:: x4 +* tingZs.
G-invariance means that the T}’s commute with any lattice isometry
leaving ¢; invariant. We now write the §-invariant decomposition

T, = PT:Pi+(I - P)T:Pi+ BT(I - P)+ (I- B)Ti(I-P), (B.1)

where I is the identity in R? and P; is the orthogonal projection on
¢;. The second operator in equation (B.1), applied to an arbitrary
vector w, gives

W -

(I — P)T:Pw = —4(I - P)Tic:. (B.2)

c?

The vectors (I — P;)Tic; are G-invariant and orthogonal to c;, and
thus vanish by (4a). The third operator in B.1 vanishes for similar
reasons (use the §-invariance of the transposed of the T;’s). The
fourth operator in B.1 is, by (4b) proportional to I, the identity
in the subspace orthogonal to c¢;. Since I = I; + F,, the proof is
completed.

We mention that we obtained P3 by trying to formalize a result used
by Hénon [42] in deriving a closed-form viscosity formula.

P4 Isotropy of second-order tensors. Any §-invariant tensor tap is of the
form pdag.

This is a special case of P3, when there is no t-dependence.

P5 Any G-invariant third-order tensor vanishes.

This follows from P1 (parity invariance).

P68 Velocity moments. Odd-order velocity moments vanish. The second-
order velocity moment is given by

be?
Zciacip = -5 af- (B.3)

The vanishing of odd-order moments is a consequence of P1. Equa-
tion (B.3) follows from P4 and the identity

3 CiaCia = be?. (B.4)
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Appendix C. Equilibrium solutions
We prove the

Lemma 1. The following statements are equivalent:

1. The N;’s are a solution of

LN (1= Ny)B) =
S A(s — &) 1’[ N1 — Ny, s, (C.1)

2. The N;’s are a solution of the set of b equations

A.(N) =

ss'

2(si —si)A(s = S [I Nji(1-Nj)t=e) =0, Wi (C.2)

3. The N;’s are given by the Fermi-Dirac distribution

1
T 1+4explh+q-c)’

(C.3)

where h is an arbitrary real number and q is an arbitrary D-dimensional
vector.

Proof: (1) implies (2).
We multiply equation (C.1) by s! and sum over all states s' to obtain

S TIN (1 Ny = 3 stA(s — ) [T NP (1~ N;)=*.(C.4)
s’ ; sa’ 7

In the Lh.s. of equation (C.4), we change the dummy variable &' into s
and decorate it with a factor A(s — '), summed over &', which is one
by normalization of probability. Transferring everything into the r.h.s., we
obtain equation (C.2). Note that the L.h.s of equation (C.2) resembles the
“collision function” A; of section 3.1 (equation (3.9)), but is evaluated with
the mean populations instead of the Boolean populations n;. The relation
A; = 0 expresses that there is no change in the mean populations under
collisions. K

Proof: (2) implies (3).
We define
N

Ni 1_Ni,

It

(C.5)
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= H(l - NJ) (C.ﬁ)

Equation (C.2) may be written
AT =S "(sh — s)A(s — ) [ V" = 0. (C.7)
as' I

We now make use of a trick employed in proving H-Theorems in discrete
velocity models (see [17], p. 29). We multiply equation (C.7) by log N,
sum over 1, and use

s’

E(S: - S.‘) log Ni = log gj st, ’ (CS)
g SIS |
to obtain

> A(s — s')log (?] x,:) HIV" = 0. (C.9)

Semi-detailed balance (T, A{s — s') = T,s A(s — &) = 1) implies that

ST P 0

ITy

Combining equations (C.9) and (C.10}, we obtain

K] R
S A(s — §') |log g’ ]ij") ]:[N;’ + HN;’ - H]VJ-’ =0. (C.11)
177 ] ) 7

as'

We make use of the relation (z > 0, y > 0)
z v t
ylog—+y—z_z—-[ log —dt < 0, (C.12)
y z T

equality being achieved only when z = y. The Lh.s. of equation (C.11)
is a linear combination of expressions of the form (C.12) with nonnegative
weights A(s — s'). For it to vanish, we must have

Hﬁ;i = H]V;", whenever A(s — s') # 0. (C.13)
i i '
This is equivalent to

Z log(N;)(sk — s)A(s — s') =0 Vs, &' (C.14)

Equation (C.13) means that log N; is a collision invariant. We now use
assumption (5) of section 2.4, concerning the absence of spurious invariants,
to conclude that
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logN; = ~(h +q-c), (C.15)

which is the most general collision invariant {a linear combination of the
mass invariant and of the D momentum invariants). Reverting to the mean
populations N; = N;/(1 4+ N;), we obtain (C.3).
Proof: (3) implies (1).

Equation {C.3) implies

Zlog(lvj) (s; —s;) =0, whenever A(s — s') # 0. (C.16)
b
This implies

S Afs - §) (H W 1) =0 (C.17)

Using semi-detailed balance, this may be written as

. N
1=)Y A(s— s')g—’m_-!;-,;. (C.18)
: I1; Ny’
Reverting to the N;’s, we obtain equation (C.1). This completes the proof
of the equivalence lemma. B

Appendix D. Inclusion of body-forces

Using the same notation as in section 7.3, we wish to obtain a Navier-Stokes
equation with a body-force f, that is

U +U-VU=-V, P + VU +f
V,-U=0. (D.1)

The force f may depend on space and time and can be velocity-independent
(case I; e.g. gravity) or linear in the velocity U (case II; e.g. Coriolis
force). The idea is to introduce a bias in the transition rules so as to give a
net momentum input. Since all the terms in the Navier-Stokes momentum
equation are O(e®) and the hydrodynamic velocity is O(e} (before rescaling),
the bias should be O(€®) for case I and O(e?) for case IL

We give now the modified form of the microdynamical equation (3.9)
appropriate for body-forces. We introduce, in addition to the Boolean
(transition) variables £, of section 3.1, the Boolean variables £, such
that

(€)= B(s — &) (D-2)

The B(s — s')’s are a set of transition probabilities associated to the body-
force; they satisfy normalization
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Z,B(s — ') =1, {(D.3)

and mass conservation

Z(s: —s;)B(s — §') =0, Vs, s'. (D.4)

They do not satisfy momentum conservation, semi-detailed balance and
G-invariance. The £,’s are chosen independently at each discrete time
and node and the B(s — s')’s may depend on space and time; further
constraints will be given below. We also need a Boolean variable ¢ which
acts as a switch: when ¢ = O the force is off and the usual transition rules

apply. The mean of ¢ is given by
(¢) = pog(po)€”

n=3 casel, n =2 case Il (D.5)

This will take care of the scaling factors arising from the change of variables
(7.15). The modified microdynamical equation is now

ni(t, + 1,7, + ¢;) = ni + Ai(n)
A‘-(n) =
3o (s — 82) (1 =€) + ¢€0) Ty (1 — )07, (D.6)

8,8’

Let us evaluate the body-force resulting from the insufficient additional
¢' term. For this, we multiply by ¢; and average over the equilibrium distri-
bution; deviations from equilibrium arising from hydrodynamic gradients
are irrelevant. We ignore the ¢-factor since it just provides the scaling
factor.

We begin with case I. The average is then evaluated over the zero-
velocity equilibrium distribution with density per cell d; we obtain

£= Y clh-B6— o) (1og) -9 p=Ts  ©OD

8,8’

where b is the number of cells per node. Equation (D.7) is the addi-
tional constraint on the B(s — 8')’s for case L If f is space- and/or time-
dependent, so are the B(s — s')’s. It is easy to check that for any given
vector f, there exist Boolean transition variables £,,, of mean B(s — s')
satisfying equation (D.7). When f is in the direction of a particular ve-
locity vector, say c;,, we can flip particles with velocity —c;, into particles
with velocity c;, whenever this is possible, while leaving all other particles
unchanged. This is done with a probability dependent on the amplitude of
the force. Other directions of the force are handled by superposition.
We turn to case II. We wish to obtain a force of the form
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fa - aﬂUﬁ (D'S)

where Cqup is a D-dimensional matrix. When the velocity U vanishes, the
body-force should also vanish; this requires

Y ci(st — s:)B(s — §) (l—g—d) (1-df=0, p= Zsj. (D.9)

8,8’

With nonvanishing velocity, we must use the corresponding equilibrium
populations given to relevant order by (cf. equation (4.14))

dD
N: = d+ —Cially. (D.10)

Here, we have used the unscaled velocity u. Below, however, we will use
U since the scaling factor is taken care of by the Boolean switch ¢. Using
{D.10) in (D.6), we find that the average momentum imparted by ¢, tran-
sitions is to leading order linear in U. Identifying with equation (D.8), we
find that the B(s — s')’s must satisfy the following constraints

Cop = 1= 4" 3l s)B(s—rs')( ) 5 sicin

= > s (D.11)

Equations (D.9) and (D.11} are the additional constraints on the B(s —
s')’s for case IL
As an illustration, consider the case of the pseudo—four—dlmensmna.l
FCHC model with a Coriolis force 202AU, where {1 is in the zs-direction. A
possible implementation for the £,, transitions is through rotation by /2
around the zs-axis of those particles having their velocity perpendicular to
this axis (with a probability dependent on ).

Appendix E. Catalog of results for FHP models

The purpose of this appendix is to summarize all known analytic results for
the FHP models, including the models II and III which have rest particles.
Adapting the theory to cases with at most one rest particle is quite straight-
forward if one includes the rest-particle velocity, namely vector zero. Qur
derivations made extensive use of properties P1 to P8 of section 2.4. With
rest particles, P1, P2, P4, and P5 are unchanged. In P3, X and u have
usually different values for moving and rest particles. P8 becomes

b—1)c
Zc:accﬁ - ( D) ‘Saﬁa (El)
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FHP-1 FHP-II FHP-III

Po 6d 7d 7d

(v}
[ Y
oy
[X)
=
-3

11-2d T11-2d 7 1-2d
g 21-d 12 1-d 12 1-d
1_1 1 1 1 1 _1 1_1 1 _1
v 1z2d(1-d)° 8 28d(1-d)°1-4d]7 8 28d(1-d) 1-8d(1—d)/7 8
0 11 1 1_1 11
¢ 98 d(1-d)* 28 98 d(1-d) 1-2d(1—-d) _ 128
Ry | 0.387 1.08 2.22
d.. |0.187 0.179 0.285

Table 1: Analytic results for three FHP models

where b is still the number of bits, so that & — 1 is the number of particles
moving with speed c.

In Table 1 below, we give results in terms of the mean density per
cell d for the following quantities: the mean density py, the coefficient
g(po) rescaling the nonlinear term in the Navier-Stokes equation (see for
example equation (7.13)), the kinematic shear viscosity v, the kinematic
bulk viscosity ¢, the maximum value R>** of the coefficient R, appearing in
the Reynolds number (see equation {8.29)), and d...., the density at which
the Reynolds number is maximum. The viscosities v and ¢ are calculated
within the lattice Boltzmann approximation (see section 8.2). pg¢ is the
dynamic bulk viscosity; when it does not vanish, as is the case with rest
particles, equation (7.11) becomes

AP+ poV-u=0

D -2
podiu + 2V p' = pov (Vzu + TVV - u) + po¢VV - u. (E.2)

Appendix F. An H-theorem for lattice gases?
F.1 Notation and basic equations

We number from 1 to b the cells at a given node (b is the number of different
velocity vectors). It is not necessary that the velocity moduli are equal.
Also, it will not be necessary to specify any symmetry for the lattice or for
the collision rules. Finally, we will not make use of the conservation of the

23by M. Hénon, Observatoire de Nice.
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number of particles or of the momentum, so that the proof is applicable to
lattices where these conservation laws are violated.

We write s; = 1 if particle ¢ is present in the input state, 0 if it is absent.
An input state is thus defined by s = (sy,...,8;). The number of distinct
input states is 2°.

We call P(s) the probability of an input state s. We have

S P(s)=1. (F.1)
We call N; the probability that particle ¢ is present. We have

N.' = 2 8,‘P(8), 1-— M = Z(l - s,-)P(s). (F.Z)

We define in the same way s}, s' = (s},...,s}), P'(s'), N/ for the output
state.

We call A(s — s') the probability that an input state s is changed into
an output state s’ by the collision. We have

P'(s') = 3 P(s)A(s » o). (F.3)
We have, of course,

Z;A(s — ) =1, (F.4)

where the sum is over all output states. We will assume that the collision
rules obey semi-detailed balance, i.e., that we have also

S A(s— &) =1. (F.5)

F.2 Local theorem

Lemma 1. If f(z) is a convex function (d®f /dz*® > 0), then

}_T, FIP'(sN] < 3 f[P(s)]. (F.6)

Proof: From general properties of convex functions, we have

.q(5)P(8)] _ 5. a()f[P()
f[ = 40) ]5 Soa(s)

where the g(s) are arbitrary positive or zero coefficients. Taking g¢(s) =
A(s — &), with §' given, and using equations (F.3) and (F.5), we obtain

FIP'(s)] < 32 Als, ') f[P(s)]- (F.8)

(F.7)

Summing over s’ and using equation (F.4), we obtain equation (F.6). B
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Lemma 2. The following inequality holds:

Z' P'(s"In P'(s") < > P(s)In P(s). (F.9)

Proof: We apply Lemma 1 with f(z) =zlnz. I

Lemma 3. The following inequality holds:
b
Y P(s)lnP(s) > Y [N;lnN; + (1~ N;) In(1 — Ny)]. (F.10)
8 =1

The equality holds if and only if

P(s1y...,8) = fI N(1 = NV, (F.11}

i=1
Proof:** The right-hand side of equation (F.10) can be written, using
equation (F.2):

>3 [s:P(s) In N; + (1 — s:) P(s) In(1 — Ng)], (F.12)

=1 &

X‘: P(s)In [13 NP1 — N.-)""] . (F.13)

Therefore, equation (F.10) can also be written

2 P(s)1n [Hi:l M'Ig](-s“)‘ Ni)l_"] <0. (F.14)

We have, for any z:
nz<z-1, (F.15)
where the equality holds only if z = 1. Therefore,

{r: N-"l(l _ M)l—a; Hb—- N_l.'(l . N;)I_"'
i=1*"4 i=1-""¢
m | | < B -

1. (F.16)

Multiplying this by P(s) and summing over s, we obtain the desired result.
|

The relation (F.11) corresponds to the Boltzmann approximation (in-
dependence of input particles).

24inspired by reference 85.
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Local H-theorem

If the collision rules satisfy semi-detailed balance, and in the Boltzmann
approximation, the following inequality holds:

>IN In N, + (1 N In(1 — NY)

=1

S i[N. In N,' + (1 - N‘) ln(l - N,)]) (F17)

i=1

Proof: From Lemma 3, we have

> P(s)InP(s) = i[N,— InN; + (1 — N;) In(1 — Ny)). (F.18)

=1

Combining with Lemma 2:

Y P(s}InP'(s") < i[N,- InN; + (1 — N;)In(1 — N,)\. (F.19)

i=1

Finally, applying Lemma 3 to the N’s and the P'’s, we obtain equation
(F.17). &

We remark that both conditions of the theorem are necessary; one can
easily find counterexamples if one or the other is not satisfied. Consider,
for instance, a node of the HPP lattice with probabilities before collision:
P(1,0,1,0) = 1/2, P(0,1,0,0) = 1/2. We have: N; = 1/2, N, = 1/2,
Ns; = 1/2, Ny = 0; the Boltzmann approximation is not satisfied. We take
the usual HPP collision rules. The probabilities after collision are then
P'(0,1,0,1) = 1/2, P'(0,1,0,0) = 1/2. From this, we deduce N} = 0,
N, =1, Ny = 0, N; = 1/2, and it can be immediately verified that the
left-hand member of equation (F.17) is larger than the right-hand member.

Similarly, let us modify the collision rules and keep only one kind of
collision: (1,0,1,0) gives (0,1,0,1), but not conversely. Semi-detailed bal-
ance is not satisfied. Take for instance Ny = N, = Ny = N, = 1/2. We
assume that the Boltzmann approximation holds; therefore, P(s) = 1/16
for all s. We deduce P'(1,0,1,0) = 0; P'(0,1,0,1) = 2/16; P'(s') = 1/16
for the other s'; N = Ny = 7/16, N; = N, = 9/16; and here again the
inequality (F.17) is violated.

F.3 Global theorem

First we sum equation (F.17) over all lattice nodes. We obtain a sum over
all cells at all lattice nodes; their total number will be denoted by r:

Z[N'(:') In N + (1 — N In{1 - N'(:’))]

i=1
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< SIND I NG 4 (1 - NO)In(1 - N9 (F.20)

i=1

Next we remark that this sum is invariant under propagation. We can
therefore extend the theorem to an arbitrary number of time steps, and we
obtain (with the same hypotheses as for the local theorem):

Global H-theorem

The function

Z[N(J‘) InN® 4+ (1 - NO)In(1 - NU))] (F.21)

=1

is non-increasing as the lattice gas evolves.

Appendix F.1 Interpretation in terms of information theory

Consider a probability distribution over v possible cases: py, ..., p,. The
associated information is

log, v + Y p; log, pi- (F.22)
=1

This information has a minimal value O if all cases have the same prob-
ability: p, = --- = p, = 1/v. It has a maximal value log, v if one of the
p; is 1 while the others are 0, i.e., for a deterministic choice between the v
cases.

We come back to lattices. P(s) represents a probability. distribution on
2% cases, and therefore an information

b+ Y P(s)log, P(s). (F.23)

Thus, Lemma 2 expresses the following property: if semi-detailed bal-
ance is satisfied, then the information contained in the P can only remain
constant or decrease in a collision.

From the P’, we can compute the N;’s by the formulas (F.2), but
the converse is not generally true; in other words, the P’s contain more
information than the N;’s. Lemma 3 expresses this fact.

In the particular case of the Boltzmann approximation, the particles
are considered as independent, and therefore, the P’s contain no more
information than the N;'s. We have then the equality in equation (F.10).

The proof of the local H-theorem can therefore be interpreted as follows:
(i) initially the N;’s are given; this represents a given information; (ii)
we compute the corresponding P’s in the Boltzmann approximation; the
information does not change; (iii) we compute the collision and obtain the
P'’s; the information decreases or stays constant; (iv) we compute the N”s
from the P'’s; here again, the information decreases or stays constant.
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